ACCESS.bus™

Specifications — Version 2.2

S

Previous versions of this document are obsolete ahd should be discarded.
This document supersedes all previous versions.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

ACCESS.bus™

Specifications — Version 2.2

Previous versions of this document are obsolete and should be discarded.
This document supersedes all previous versions.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

February 1994

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors.or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994

All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I12C components from vendors licensed by Philips under the Philips 1’c patent conveys a
license to use these components in an I2C system, provided that the system conforms to 12C
specifications.

TABLE OF CONTENTS

SECTION 1 .- HARDWARE SPECIFICATION

1.0
1.1
1.2

13

1.4

1.6

1.7
1.8
1.9
1.10
1.11
1.12
1.13

Introduction.......cccceveerernuncecennnnnnes e eeaseeaeteresasasasaetasarsasreresesaneranes 1-1
General Description 1-1
General CharaCteriStCSccomruirimnmietineie e 1-2
1.2.1 START and STOP CONItionS.veceevscereriumemmessomsesnssssesens 12
Data Trans-fer..‘. ... 1-3
131 BYLe FOMMAL . eeeeeeeesemeessesooseessnsesssssssnsessssssssssssssseesssnece 13
1.3.2 Acknowledge......ccooiimiirriiiiiiniiiiii et e 1-3
Arbitration and Clock GeReration...........cccovvveeniniiiinniiiin e 1-5
1.4.1 Synchronmization..............cvvevirimiemmmmimmi s 1-5
142 AWIIION....eceerseseersssossssssesssssseseserereeeeee e 15
1.43 Use of the clock synchronizing mechanism as a
handshake........coeeeveeiimiriininieeene errrerererrerereseaeaeas 1-6
Format of 7-Bit Addresses.......ccuvuevveriuciriiuineriiniiiieeieicesiae e eeenenes 1-6
7-Bit AdAIessing.........ccoveviricriiiiiiiiiniiii e reee e e 1-7
1.6.1 definition of bits in the first bytecoerniiniieiiiinns 1-7
Cabling and CONNECIOTSuiuiieieiiiiiierieiitiniirir e se e s e e ee s sananeas 1-8
203 PRSP PO RN 1-8
Maximum Number 0f DeVICESc.ucvrrrrureeiniieri e ce e 1-9
Cable Shieldocoeiiiirieeiieee ettt e er et 1-9
Pull-ups and Series ReSiSTOISoovveueieiiemiriievieeeece i 1-10
Main Differences Between the 12C and ACCESS.BUSccccovremnrennnn. 1-10
Electrical Specifications and Timing For I/O Stages and Bus Lines............ 1-10

Table of Contents - ACCESS.bus Specification V2.2

ii

SECTION 2 -- BASE PROTOCOL SPECIFICATION

2.0
2.1
2.2
2.3
24
2.5

2.6

2.7

238

2.9
2.10

ACCESS.BUS ProtoCOL. .. eiieeiieiicceeieeeeeeeeeeeeeeeee e 2-1

General Description e sttt e e aeaae e e 2-1
MesSage FOMMAL..............ovveevueeeeeeeeeeeemeseeeeeeeses oo esee oo 2-1
Standard ACCESS.bus Protocol Messagesccoceveuveunennnn.. 22
AAIESSING. ... et e 22
Identification.............cceieriieiieccr ettt ee e 2-3
2.5.1 = Random versus Serial Device Numbers....................ccocovcrerenn.n.. 23
Capabilities INFOrMAtON.eeveeeersrereeeeeeoeoeeooe oo 24
2.6.1 . Capabilities String Syntax and Semantics.................cooveveveunan. 2-5
2.6.2 Standard Capabilities and Conventionso..ooovvvveveunnnnn, 2-5
2.6.3 Binary Data in Capabilities Strings e eererereeereerneereras 2-7
Configuration Process.................... ettt ettt et eera oo rbaasre 2-7
2.7.1 Power-up/Reset Phase.............coovuiiiiiinoniieeeeneeeeee e 2-7
2.7.2 Identification Phasec.cceeeeeeiuvviivioreeeeeeee, e 2-7
273 Capabilities Phase............vvvveeiiiieeeeeee oo, 28
2.7.4 Normal OpPeration..........ccccveeereirreeeseeeeeeseeeeeeeeseeeessreess s 2-8
Timing Rules..............cocvvvvevveeeen.. et 2-8
281 BuS TIMUNE ...ooiiiiiiiiieciiieciie e 2-8
2.8.2 Response TMUNE......ccceivumiimiriiiniiiiiiee e reaereve e 2-8
2.8.3 Minimum Device Performance.................coocovveeeveeeeeereereerinnnn, 2-8
Exception Handling............cooooviiiiiiiiiiiiiiiiiie e eeeeae e 29
Detailed Command/Message DeSCHPUONS...........ccoeeereveeveeireeeeeeeanennns 2-10
2.10.1 Command Coding..........ccoouviviireieeeeieeiiireeseieeeeeeeaseeeseeesens 2-10
2.10.2 Device Data Stream Message.............. s 2-11
2.10.3 Device Defined (iontrol/Status (C/S) Messages.......cccoeeeernevnnne.. 2-11
2.10.4 Pre-defined C/S Messages, Interface Partcocoeeeeeevnnnin, 2-2-12
B TN T - SO 212
2.104.2 Attention.........ccccoreen.n.... SRR PRt 2-12
21043 Identification Requestccocevvieviiieiieceieeceenen. 2-13
2.1044 Identification Reply.............ooovvvmmereeeeievrveeeann, 2-13
21045 Assign Address............... SRR SRR 2-14
2.104.6 Capabilities Request.............c.coovneeveveeeinieivennnn, 2-14
2.10.4.7 Capabilities RePIY.......cccvvvrieeciieieieeeieerreeeearenns 2-15
2.104.8 Enable Application Report..................... 2-16
2.10.49 Presence Check......................... e 2-16

Table of Contents - ACCESS.bus Specification V2.2

2.10.4.10 Resource Request (Optional)ccccoevrvirrinennnenen. 2-16

2.10.4.11 Resource Grant (Optional)...........ccccverevrenriveennies 2-17
2.10.4.12 Vendor Reserved Commands (Optional, Interface
Part) ettt ettt ettt e et eeae e e annean 2-18
2.10.5 Pre-defined C/S Messages, Application Part...........ccccccoevceneeee. 2-18
21051 Application Hardware Signal (Optional) 2-18
2.10.5.2 Application TeStcccvvuiiiiiinieriierierae e eriee e 2-19
2.10.5.3 Application Test Replyccccuvviiiiviiiiniiieneennnnnnnns 2-19
2.105.4 Application Status Messagecccceeevenereennnnnnn. 2-20
2.11 Device Power Management (Optional)........c.ccccveveeeeecnierieeceinneceneseennnns 2-20
2.11.1 Device Power Management Commandccccveevviieevennennn. 2-22
2.11.2 Device Power Usage Replycccuvvnnennn. s 2-22
2.11.3 Power Management Capabilities String............ s 2-22
2.11.4 Power Management Resource Request command.................c....... 2-23
2.11.5 Power Management Resource Grant command...................c.c........ 2-24
. 2.11.6 Power Management Status Messa Bttt ee e ee e e e 2-24
 2.12. Device Bandwidth Management (Optional)ccevuiiiiieeiinnecinieernnnnns 2-25
2,12.1 Bandwidth Management Capabilities String.............cccvevrenneen. 2-25
2.12.2 Device Bandwidth Management Command........................ cevrnen 2-26
2.12.3 Device Bandwidth Usage Reply......c.cccceuiiiiiniiiiiiiiiiiiniiiiiieeennnn, 2-26
2.12.4 Bandwidth Resource Request command.............cccceveevveennnnnnnn.. 2-26
2.12.5 Bandwidth Resource Grant command.............ccccueervveceernnenienas 2-27
APPENAIX A Lo e e e e et ae e e e 2-28

SECTION 3 -- DEVICE DRIVER INTERFACE SPECIFICATION

3.0 INFOAUCHON ...euuiirieii it ittt ittt ceee s s eer et e sreeeean saaesereaenaeees 3-1
3.1 BasicC teImMINOIOZYeuueirivn e iireeeerree et e e ataeeesanaeaene e e e eanaennes 32
3.1.1 DevVIiCe dmVET......oiiiiminiiiriiiiiienieiieerevrennea e rrrenecseeeereensenaeasnnnn 3-2
3.1.2 Device capabilities...- rreeerrreeaieereeraees 3-2
313 Driver Capabilities te.......oovvvvvereroorosooeesoosoeeoosoeeeeeoe oo 32
T U T ¢ (<) (() PP PPPURt 32
315 AYPE() crvereeereeeeeeeeeeeeeeeeeee et e et e et e e eenranas 3-2
3.1.6 10107 [[T TP 33
317 DeVICEID ..ot cenene ettt st eee 3-3
3.1.8 DeviceTable......oooiiiiiiiiriiriiiiii e e 3-3
3.1.9 Device driver linKing PIOCESS.........ooevrveeeeeerreseeeereressessssees 3-3

Table of Contents - ACCESS.bus Specification V2.2 -

iv

32

33

34

3.1.10 Device Table €NIY.......ccoeiiieriierireeeriiiieeeeeeeeeeeeeeeeereneeeaens 33

3.1.11 Device status and status Tegister..............oovvvmrvemeeeneeeeeeeneennnnnn, 34
The ACCESS.bus device diver................... e st ssns 34
3.2.1 System cONfIUIAtIOR.ceovrimnieiiiiiiiie et eeeeeeneeaenan 34
3.2.2 Driver capabilities List..........ccccceeeeeieiiireiiin el e 34
3;2.3 - The Linking PrOCESSuuueeeirerreiiiieeeeeeerieiceeeeeiee e eeeevesneeessans 3-5
The Bus manager - Device driver interface..............cccooeveeiviivecveeenene. 3-7
33,1 Message Fields........cocoiviiiiiiriieiiiieieicieeeeeeee e eeaeeaen 37
' 3311 Minor OP COUE ..ottt eeee e 38
3.3.1.2 Majoropcode.....ccceevverneeeenerennnnn... e 3-8
3.3.13 Device ID (DevID)......cocevvvviiieniieecreeee e, 3-8
33.14 Message Length...................... e 3-8
3.3.1.5 Data BYIES......vvvevrerereecieecieer ettt eeeeeans 3-8
332 Driverto Bus Manager Messages e 38
3.3.2.1 Reset opcode-20h........cccoovvvviviiinniiiiiiivineee, 3-9
3.3.22 Link request op code = 21h.......cccocvivnrvivniinns 39
3323 Link approval/disapproval - op code - 22h................ 30
3324 Get specific device table - op code - 23h.................. 3-10
3.3.25 Get device ID string opcode -24h.........cceunen.eeee. 3-10
3326 Get device type op code - 25h......ccocvverereevinnenen. 3-10
3.3.2.7 Get device status - op code - 26h..........coveveennne. 3-11
3.3.2.8 Device enable/disable - op code - 27h...................... 3-11
3.3.29 Message to device - op code - 28h...........oeuvnnnnnnn.... 3-11
3.3.2.10 Driver disconnect opcode -2%.............ocevvinnnninn. 3-12
3.3.3 Bus manager to Driver Messages.........ccccocoovveeecvenieeiceeerneennnn. 3-12
3331 Link reply opcode - 40h..........ccvevveveereeeeaeennn. 3-12
3.3.3.2 Specific device table - op code - 41h.........ccc.u.ne..e.. 3-13
3.333 DeviceID opcode-42h.......c.ccoooeiiiiviieniiiiinnnnn, 3-14
3334 Device type op code - 43h.......c.oorrciniinnnene 3-14
3335 Device status op code - 44h..........cccceevvvnrvrenennn, 3-15
3.33.6 Message from device op code -45h....................... 3-15
3.3.3.7 Device disconnéct -opcode-46h..........cccuuuennnn.nn. 3-16
The device driver to bus manager interface mechanism (IBM PC
SPECIEIC) ettt e e e e e e e e r—aa e e oaan 3-16
341 GENETal........iccocvureerrcrrnecsnene st 3-16
342 Driverto bus Manager........ccoceeevevveieeiiiiineierireeeeeeeeeeeeeicsinnnnns 3-16

Table of Contents - ACCESS.bus Specification V2.2

35

3.4.3 Busmanagerto driver-1eplies........ccccoviviivviiiiiiiriinniieiieeennnnns 3-17

3.4.4 Bus manager to driver - device and disconnect MESSAZES. ...covvrrrnnn 3-17
MesSage SUMMALYcccovruvereeeennnn. oot eeeeeeee e 3-19
3.5.1 Driver to bus Manager MESSALES......cceceererrerriireeeeerireeereeacrnsenes 3-19
3.52 Bus manager to driver mesSages........c.covueerrriruesainneresnnnnnanns .3-19

SECTION 4 -- LOCATOR DEVICE PROTOCOL SPECIFICATION

4.0

| 4.1
| 4.2
4.3
4.4
4.5

INIFOUCHONceeeiiiiiiei ettt ettt e s e e e eeee e enanes 4-1
4.0.1 DeSign ODJECLIVES cccvurirrrerrnreerseeerrocervessvrssesesssseesssrsrersensssssnns 4-1
4.0.2 Overview Of Generic LOCAOrceeeeuveiererriennnieieineinieroreenuenenees 4-1
Locator EVENt RePOIS......oivuiiieiieiieiiiiiceeeeeereeeee e eeeerenae e eeesenra e esneees 4-1
Capabilities Information...............c..ooinll e, 4-2
Locator Conventions..........cccceviiiiioruieeeaniieeeiieteeresteeees e e ssee s e 43
Timing and EXCEPHONScccuuiiiieiiieiiiiiiiiiieei et eean e e e e 4-5
Locator Messages and COMMANGS.v.veeeeereeeeeseeeeeeeeeeerereseseeeesseeaeens 4-5
4.5.1 Locator Report (Device Data Stream)covevueeereeencrnnserreenanenenes 4-5
4.5.2 Application Set Sampling Interval........cccccireeecimiecisrireccnnreeenns 4-5
4.5.3 Application Polliiueiemiiiiiiiiiirerrreeiiineeerree e erensransenans 4-6
454 Locator Self Test RePOIt.....ccccociiiiiieriiieiiieeee e e e e e e 4-6

SECTION 5 -- KEYBOARD DEVICE PROTOCOL SPECIFICATION

5.0

5.1
5.2
53
54
55
56

5.7

INETOQUCHON «.eeuvii et ce it ee et e ceteeeees e ae e eeerrean e s eeeeenenaaens 5-1
501 Design ObJectiVES ...ovuuuniiiiieeiiiiiieeececvieieeee et ee e e e aeee e 5-1
5.02 Generic Keyboard OVEIVIEWcoeeeeueeeeeeeeeeeee e eeeeeere e 5-1
Key Event Reportingccoeevvinna: ettt ee et ettt ieaeer e iaereraaans 5-2
AUO REPLAL ..o e e e aa e s 5-2
Key click and Bell.........cocvvvvecciiiiieeeeeeee, [5-2
Capabilities Information..........cceeviiiiiiiiiiiice e 5-3
Timing and Exceptions (Guideline) e eeeneeaerre e et trn e e ranaas 5-4
Host Commands to KeyBoard .. 54
5.6.1 Application Click (Optional)..........ccccceeiiiiiniiiieiniiiiieeviceevnenens 54
5.6.2 Application Bell (Optional)..........ccceecuerireeicrireirerciiesisneenas 54
56.3 Application LEDScccovivvviiiiiiiiniie et 5-5
56.4 APPUCAON POIo.oiivieieeeeereeeeeeeee e et 5-5
Keyboard To Host Data.............ccccevevenennnnn, et 5-5
5.7.1 Keyboard State Report (Device Data Stream).............cccceeveeueneennn. 5-5

Table of Contents - ACCESS bus Specification V2.2

vi

572 Keyboard OutpUt EITOr......ocovueerioreeoeseoeooeoooeoeoooooeooo 5-5
58 Keyboard Mapping Tables....................... et 5-7

581 Keyboard Mapping........cooviveiiieiiiiiiiiiiiieeeeeeeeeeeeee e, 57
Appendix 5.A LANGUAGE MAPPING ooo.ooooovooeoeeoeeoeooeoeoeoeoeooo 5-8
Appendix 5B KEYMAPS........couiiieiiiirie e sesceeeen e ees s 59
Appendix 5.C PC 101/102 DESIGNcoovueieeeeeeeemeeeeseeeeeeee oo, 5-12
Appendix 5D - EXAMPLE ISO/EUC 9995 KEY POSITIONSooovoveovron, 5-16

SECTION 6 -- TEXT DEVICE PROTOCOL SPECIFICATION

6.0

6.1

6.2

Introduction..........ccooooiiiiiiiiie e ettt aeaas 6-1
6.0.1 DesSign ObJECHVEScuvurriiiieiie it ee vt e e ee e e e ar e 6-1
6.0.2 Text Device OVEIVIEW......ccveoveeeeieeeeeeeieeisee e eeeeeeeeeeeren e, 6-1
Text Device Protocolccoouviviininiiiniiiiiiice el RUTTTRION 6-1
6.1.1 Device Number and Identification...........c.ccceeeeeeeemvevrvereernsnnnn 6-1
6.1.2 Message Lengthand Timingcoccooevovvevereeeereereroennn, 6-1
6.1.3 FIOW CONIOLoooieinianitenaeses oo 6-2
6.1.4 Serial Asynchronous Communication Parameters........................ 6-3
6.1.5 Serial Asynchronous Control Signals.............cccooceevevvnceervesraanns 6-3
6.1.6 Direction CONrol.........ccccovvieiiiiiiiinieiceie e 6-4
Capabilities INfOIMAtON.........cccuviiiiiiir it er et e e e eeee e eeaens 6-5

~-Table of Contents - ACCESS.bus Specification V2.2

SECTION 7 -- MECHANICAL DRAWINGS

7.0

Mechanical Drawings............0c..c.oovn.. eeitere ettt st e eeneasanaebanes 7-1
Figure 7.1: Recommended Panel Cut-Outiveeeveveemrereerneennes 7-1
Figure 7.2: PC Board Layout (connector mounted opposite side).......... 7-2
Figure 7.3: Cable Assembly - Configuration/Dimensions.................... 7-3
Figure 7.4 Maie Connector - Configuration/Dimensions..................... 74
Figure 7.5: Male Connector - Configuration/Dimensions..................... 7-5
Figure 7.6: Female Connector (non-keyed shielded)

Figure 7.7:

- Configuration/DIimensions.........cccc.ceveverinnieneerceneeaneennnnns 76

Female Connector (non-keyed partially shielded
Configuration/Dimensions............ccceeeeeuuieeneecienecrnnennnennns 7-7

Table of Contents - ACCESS.bus Specification V2.2

vii

SECTION 1

ACCESS.bus

Hardware Specification

SECTION 1

ACCESS.bus

Hardware Specification

February 1994

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this decument.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991 1992, 1993, 1994 '
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety. _

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of 12C components from vendors licensed by Philips under the Philips 12C patent conveys a

license to use these components in an 12C system, provided that the system conforms to 12C
spemﬁcatlons

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

1.0
1.1
12

1.3

1.4

1.5
1.6

1.7
1.8
1.9
1.10
1.11
1.12
1.13

Introduction........cceuoeuese e et eaen 1-1

General Descnpnon e ee s s s e s seaenees 1-1
General CharaCteriStCS ...uvuunrieirrrruuieisicrereeemesissiiimrienscssseasssesssnrnnsnens 1-2
12.1 START and STOP CONAIfiONS.......oocerrreeressserersesssees 12
Data Transfer........vvvmiueiline ettt e et e s sesaas 1-3
1.3.1 Byleformat 1-3
132 ACKNOWIEAEE...ceueuenririiiiinenisiiericneninissinecnssessesenesnsssnes 1-3
Arbitration and Clock GENnerationceeeererererenriririeninniessiseseisrersenneeenns 1-5
1.4.1 Synchronizabion........cceceeveeiiiiieiienieriiienieneneeeneaeeennnns 1-5
142 Arbitration....cccoeeieiinisiiiniiisinniinniniceeiseriesnennes 1-5
14.3 Use of the clock synchronizing mechanism as a
handshakec.covieivininennneninnnnn et ee e 1-6
Format of 7-Bit AdAresses.....ccciirereiiieresverimeiniiieiniimminieiiieermn, 1-6
T-Bit AdAressing....cccceeeeeeeeerieiciisiiismmmniimimmm s 1-7
1.6.1 . definition of bits in the first byte.....ccccveeicvrircrccsicennenns 1-7
Cabling and CONNECLOTS. . iuisuieieiiierreisnseirsesiirssessserniersssensesissansnssnnsss 1-8
POWET ..ceeerreeieieireire ittt e rr e sr e s reasbb e s rrra b er s e araa s e e e saas 1-8
Maximum NUMDET Of DEVICESvuuviresvsreersniesresescesessssssessssssssisssnes 1-9
Cable Shield........oorrverrmmmmmmmtiiiiiiiiniiii s e eesesssesseas 19
Pull-ups and Series ReSiStOIS....ccccciieeccceerrerccmnrrrecccreinmiisnssunssssssensenes 1-10
Main Differences Between the 12C and ACCESS.BUS..........cceveververerenerennes 1-10

Electrical Specifications and Timing For I/O Stages and Bus Lines............. 1-10

1.0 Introduction

ACCESS.bus is a serial communication protocol between a computer host and its peripheral
devices. It provides a simple, uniform and inexpensive way to connect peripheral devices such as
keyboards, mice, joysticks, modems, monitors, and printers 1o a single computer port.

The ACCESS.bus protocol includes a physical layer based on the 12C serial bus developed by
Philips, and several software layers. The software layers include the base protocol, the device
driver interface, and several specific device protocols (keyboard, locator, text, etc.).

The base protocol defines standard messages for device initialization, device identifications, address
assignment, and a message envelope for device reports and control information. In the following
discussion the host computer is-simply called the computer and all the other partners on the bus
are called devices. A bus transaction is called a message.

This document describes the various layers of the ACCESS.bus protocol starting with the physical
layer hardware specification.

Figure 1.1: A Typical ACCESS.bus System

1.1 General Description

ACCESS.bus is based on two wires, serial data (SDA) and serial clock (SCL), which carry
information between the devices connected to the bus. Following initialization, each device is
recognized by a unique address and can operate as either a master transmitter or slave receiver. A
master is the device which initiates a data transfer on the bus and generates the clock signals to
permit that transfer. The master device always transmits data to the slave. Any device addressed by
the master is considered a slave.

The ACCESS.bus is a multi-master bus. Every device connected to the ACCESS.bus must be
capable of being both a bus master and a bus slave.

The master generates the timing and terminates the transfer. Since more than one device will be
connected to the ACCESS.bus, more than one master could try to initiate a data transfer at the
same time. To avoid the chaos that might ensue from such an event - an arbitration procedure has
been developed. This procedure relies on the wired-AND connection of all ACCESS.bus interfaces
to the ACCESS.bus.

If two or more masters have to put information onto the bus, the first to produce a 'one’ when the
other produces a 'zero' will lose the arbitration. The clock signals during arbitration are a
synchronized combination of the clocks generated by the masters using the wired-AND connection
to the SCL line .

ACCESS.bus Hardware Specification V2.2 1-1

1.2

Generation of clock signals on the ACCESS.bus is always the responsibility of master devices;
each master generates its own clock signals when transferring data on the bus. Bus clock signals
from a master can only be altered when they are stretched by a slow-slave device holding-down the
clock line, or by another master when arbitration occurs.

General Characteristics

SDA (Serial Dats Line)

SCL. (Serlal Clock Line)

FTT T ek T T
[}
'+ scuxn | DATANY |
1 ouT -]
[}
! 8CLK DATA
"N N

1

DEVICE

Figure 1.2: Connecting ACCESS.bus devices to the ACCESS.bus

Both SDA and SCL are bi-directional lines, connected to a positive supply voltage via a current
source or pull-up resistor. When the bus is free, both lines are HIGH. The output stages of devices
connected to the bus must have an open-drain or open collector in order to perform the wired-AND
function. Data on the ACCESS.bus can be transferred at a rate up to 100 kbit/s in the standard-
mode. The number of interfaces connected to the bus is dependent on the bus capacitance limit of
1000 pF, the overall bus length of 10 meters, and the current available to power the devices.

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW
state of the data line can only change when the clock signal on the SCL line is LOW (see Figure
1.3).

1 R
|

scL |/ \| / \
' SDA stable SDA '

| andvsiid | changes |

Figure 1.3: Bit transfer on the ACCESS.bus
1.2.1 START and STOP Conditions

Within the procedure of the ACCESS.bus, unique sequences are defined as START and
STOP conditions (see Figure 1.4).

ACCESS.bus Hardware Specification V2.2

3, v P
CONDITION CONDITION

Figure 1.4: START and STOP conditions

A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START
condition.

A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP
condition.

START and STOP conditions are always generated by the mastéf. The bus is considered
to be busy after the START condition. The bus is considered to be free again a certain
time after the STOP condition.

1.3 Data Transfer
1.3.1 Byte format
Every byte put on the SDA line must be 8-bits long. The number of bytes that can be

transmitted per transfer is restricted by the ACCESS.bus protocol. Each byte must be
followed by an acknowledge bit. Data is transferred with the most significant bit (MSB)

first (Figure 1.5).

acknowledge acknowledge
from receiver from receiver
==
]
]
]

ST an e oo on ¥ I g v 0 s M UV2R

b -~
R STOP
coIaRT byte complete CONDITION

Figure 1.5: data transfer on the ACCESS.Bus
If a receiver can't receive another complete byte of data until it has performed some other
function, for example servicing an internal interrupt, it can hold the clock line SCL LOW
to force the transmitter into a wait state for a limited amount of time. Data transfer then
continues when the receiver is ready for another byte of data and releases clock line SCL.
1.3.2 Acknowledge

The acknowledge related clock pulse is generated by the master. The master releases the
SDA line (HIGH) during the acknowledge clock pulse.

ACCESS.bus Hardware Sp_cciﬁcau'on V2.2 - - 1-3

14

The slave must pull down the SDA line during the acknowledge clock pulse so that it
remains stable LOW during the HIGH period of this clock pulse (Figure 1.6) meeting set-
up and hold times.

When a slave-receiver doesn't acknowledge the slave address (for example, it’s unable to
receive because it’s performing some real-time function), the data line must be left HIGH
by the slave. The master can then generate a STOP condition to abort the transfer. This is
called 'negative acknowledge.'

If a slave-receiver does acknowledge the slave address but, some time later in the transfer
cannot receive any more data bytes, the master must again abort the transfer. This is
indicated by the slave generating the negative acknowledge on the first byte that cannot be
received. The slave leaves the data line HIGH and the master generates the STOP
condition.

r -

DATA OUTPUT
BY TRANSMITTER

]
\ mos
T
) ' MSB Lse i
L ! . HIGH = no acknowledge
DATA OUTPUT)y \ ,
BY RECENER , !
]
! 1
!
g
'
[

LOW =z acknowledge
s T\ AN
MASTER
A case
.. 1 2 ? [9
START
CONDITION

clock pulse for
acknowiedge

Figure 1.6 Acknowledge on the ACCESS.bus

ACCESS.bus Hardware Specification V2.2

1.4

Arbitration and Clock Generation

1.4.1

1.4.2

Synchronization

All masters generate their own clock on the SCL line to transfer messages on the
ACCESS.bus. Data is only valid during the HIGH period of the clock. A defined clock is
therefore needed for the bit-by-bit arbitration procedure to take place.

Clock synchronization is performed using the wired-AND connection of ACCESS.bus
interfaces to the SCL line. This means that a HIGH to LOW transfer on the SCL line
will cause the devices concerned to start counting off their minimum LOW period and,
once a device clock has gone LOW, it will hold the SCL line in that state until the clock
HIGH state is reached (Figure 1.7). However, the LOW to HIGH transition of this clock
may not change the state of the SCL line if another clock is still within its LOW period.
The SCL line will therefore be held LOW by the device with the longest LOW period.
Devices with shorter LOW periods enter a HIGH . wait-state during this time.
ACCESS.bus defines a minimum actual bus speed for devices, to limit this type of clock
stretching, '

When all devices concemed have counted off their LOW period, the clock line will be
released and go HIGH. There will then be no difference between the device clocks and the
state of the SCL line, and all the devices will start counting their minimum HIGH
periods. The first device to complete the HIGH period will again pull the SCL line LOW.

In this way, a synchronized SCL clock is generated with its LOW period determined by
the device with the longest clock LOW period, and its HIGH period determined by the one
with the shortest clock HIGH period.

wait start counting
state = HIGH period
—pie

cLK
1

__counter
~reset

CLK
2

Figure 1.7: Clock synchronization during the arbitration procedure

Arbitration

A master may start a transfer only if the bus is free. Two or more masters may generate a
START condition within the minimum hold time (tgD;STA) which results in a valid
START condition on the bus.

Arbitration takes place on the SDA line, while the SCL line is at the HIGH level, in
such a way that the master which transmits a HIGH level, while another master is
transmitting a LOW level will switch off its DATA output stage because the level on the
bus doesn't correspond to its own level.

Arbitration can continue for many bits. Its first stage is a comparison of the slave address
bits . If the masters are each trying to address the same device, arbitration continues with
comparison of the sending master address. Arbitration should always be completed during

ACCESS.bus Hardware Specification V2.2 . 1-5

1.5

1-6

1.4.3

the slave and master address transmission. Because address information on the
ACCESS.bus is used for arbitration, no information is lost during this process.

A master which loses the arbitration can generate clock pulses until the end of the byte
which it loses the arbitration.

If a master loses arbitration during the addressing stage, it's possiblc that the winning
master is trying to address it. The losing master must therefore switch over 1mmed1ately
to its slave-receiver mode.

Figure 1.8 shows the arbitration procedure for two masters. Of course, more may be
involved (depending on how many devices are connected to the bus).

transmitter 1 loses arbitration
SDA is not DATA 1

DATA
1

DATA
2

8DA

Figure 1.8: Arbitration procedure of two masters

The moment there is a difference between the internal data level of the master generating
DATA 1 and the actual level on the SDA line, its data output is switched off, which
means that a HIGH output level is then connected to the bus. This will not affect the data
transfer initiated by the winning master.

Use of the clock synchronizing mechanism as a handshake

In addition to being used during the arbitration procedure, the clock synchronization
mechanism can be used to enable receivers to cope with fast data transfers, on either a
byte level or a bit level.

On the byte level, a device may be able to receive bytes of data at a fast rate, but needs
more time to store a received byte or prepare another byte to be transmitted. Slaves can
then hold the SCL line LOW after reception and acknowledgment of a byte to force the
master into a wait state until the slave is ready for the next byte transfer in a type of
handshake procedure.

On the bit level, a device such as a microcontroller without, or with only a limited
hardware ACCESS.bus interface on-chip can slow down the bus clock by extending each
clock LOW period. The speed of any master is thereby adapted to the internal operating
rate of this device.

Format of 7-Bit Addresses

Data transfers follow the format shown in Figure 1.9. After the START condition (S), a slave
address is sent. The address is 7 bits long followed by an eighth bit which is always a zero. The
‘one’ value is reserved for future expansion.

ACCESS.bus Hardware Specification V2.2

\
L%) apress AW ack |—nA'rA—' ACK '——lwm—l ACK Ll

STOP
START . CONDITION
CONDITION)

Figure 1.9: A complete data transfer

. L data transferred
0 (write) (n bytes + acknowledge)

From master to slave A = acknowledge (SDA LOW)

D From slave to master A =not acknowledge (SDA HlGH)
S = START condition

P = STOP condition

Figure 1.10: A master-transmitter addresses a slave receiver with a 7-bit address.

Notes:

1. Each byte is followed by an acknowledgment bit as indicated by the A or A blocks in
the sequence.

2. ACCESS.bus compatible devices must reset their bus logic on receipt of a START or
repeated START condition such that they all anticipate the sending of a slave address.

1.6 7-Bit Addressing

The addressing procedure for the ACCESS.bus is such that the first byte after the START
condition normally determines which slave device will be selected by the master.

1.6.1 definition of bits in the first byte

The first seven bits of the first byte make up the slave address (Figure 1.11). The eighth
bit is the LSB (least significant bit) and is always a zero in the current ACCESS.bus
specification.

When an address is sent, each device in a system compares the first seven bits after the
START condition with its address. If they match, the device considers itself addressed by
the master as a slave-receiver. ,

msB iss
I I N I ..|
"N NS S TN B ki

L siave address —J

Figure 1.11: The first byte after the START procedure

ACCESS.bus Hardware Specification V2.2 1.7

1.7

18

Cabling and Connectors

ACCESS.bus uses a four-pin, shielded MOLEX SEMCONN or AMP SDL, modular-type
connector. The MOLEX version is not keyed, the AMP version has key "D". This "D" key
provides compatibility between AMP and MOLEX connectors.

1 BLACK-GND
— 1%, GREEN-sDA
e filf——
l:'_‘ 19— 3 RED-+5V
—~— 4 WHITE-SCL

Figure 1.12: Shielded Modular Male Connector - Pins Side (Not to Scale)

The ACCESS.bus cable is a four conductor, low capacitance shielded cable (refer to Section 7 of
this document for dimensioned outline drawings). The four conductors are used for ground - GND,
serial data - SDA, plus five volts - +5V, and serial clock - SCL.

N

1—GND
2—SDA
3 —+5V
4 —SCL

4321
Figure 1.13: Female Connector, Front View (Not to Scale)

The host computer and the devices which do not have built-in captive cables, have one or two
female connectors.

Hand-held devices such as mice or bar code readers have one male connector at the end of a captive
cable. ' :

Tee connections are allowed to connect multiple devices.
The ACCESS bus cable has the following wire sizes:

SDA and SCL wire size AWG #28.
GND and fSV wire size AWG #26.

The capacitance of the SCL and SDA conductors shall be less than 70 pF per meter between one
conductor and other conductors connected to shield.

Power

ACCESS.bus host should supply +4.75V to 5.25V. The rise time of the +5V supply should be
less than 100 milliseconds to insure power up reset for all the devices connected to the bus.

ACCESS.bus Hardware Specification V2.2

1.9

1.10

Each device connected to the bus should have a decouphng capacxtor of 10uF connected to the +5V
and GND lines.

ACCESS.bus devices may get the +5V from their own:-power supply and not use the host's +5V
supply. The device's external power supply should provide a power up reset when power is applied
to the bus by the host. The external +5V power supplies-are connected to the ACCESS.bus by
GND pin only, the +5V must be isolated from the ACCESS.bus +5V signal,

ACCESS.bus host's power supply or device's- power supplies must supply a minimum of 50mA »
and a maximum of 1A. Current limiting or overcurrent protection is recommended. The current
consumption of each device should be stated in the device documentation.

Each ACCESS.bus device must Have two ratings: maximum current in miliampers ("I") and
maximum capacitive load in pF ("C").

Table 1.1: Typical Ratings of ACCESS.bus devices

Device Typical Rating
ACCESS .bus host computer 1200 C100
ACCESS.bus cable, 1 meter 10 C65
ACCESS.bus keyboard 1110 C20
ACCESS.bus mouse 130 C80

It is recommended that the ratings will be labeled on the device itself.

Maximum Number of Devices
The maximum number of ACCESS.bus devices is limited by three factors:

1. Device address - limited to 125 devices.
2. Power consumption - less than the host's power supply rating.
3. The capacitance on the bus - less than 1000pF.

The ACCESS.bus does not have any recommended topology or configurations. The only
restriction is to satisfy the limits of power consumption from the host's power supply and not
exceed the limit of 1000pF on the bus.
The maximum cable length is limited to maximum 10 meters.
For any cable length the bus must conform with the following limits:

1. The total capacitance on the bus should not to exceed 1000pF.

2. The voltage measured on pins +5V and GND of each device on the bus should not drop

in any case below 4.5V.

3. Plugging-in a new device to the bus should not drop the supply voltage to the other
devices below 4.5V

The cable length may exceed the limit of 10 meters by using an ACCESS.bus repeater for the
SDA and SCL signals.
Cable Shield

The cable shield is connected only to the host computer connector's case. The host's connector
case is connected also to the host's GND.

The cable’s shield is not used by any device and not connected to any device.

ACCESS.bus Hardware Specification V2.2 h 1-9

1.11

1.12

1.13

1-10

The minimum resistance between the cable's shield to any signél on the bus is 100K Ohms, while
the cable is connected to all the devices and disconnected from the host.

Pull-ups and Series Resistors

The host provides a pull-up resistor or a 6mA current source for the SDA and SCL open drain
signals. :

The pull-up resistors or the current sources provide 6mA per line to pull the line to HIGH logic
level. The minimum pull-up resistor is 820 Ohms. '

A 51 Ohm maximum series resistor is connected between the SDA and SCL pins on each device
and the corresponding signals on the ACCESS bus. This resistor smoothes the bus signals and
offers additional ESD (electrostatic discharge) protection to the device. Two clamping diodes to
GND and +5V offer additional ESD protection. The diodes are needed only if they do not exist in
the devices controller.

Host Device
F—— o vce ==
| Rp' 1 |
t S 20! N 4
| | SCLOrSDA | p A |
D A 3
I l] I

: ' : GND ! '
| l + -
I = 1
[SR |

Figure 1.14: Pull-up and serial resistors for the SDA and SCL lines
Main Differences Between the 12C and ACCESS.bus

1. The ACCESS.bus specifies a connector and a cable. ,I2C-bus does not.

2. The V¢ and GND are supplied by the host in addition to the SDA and SCL. The
12C-bus has only SDA and SCL lines.

3. The master device always transmits data to a slave. In 12C-bus protocol the master can
also read from the slave.

4. Every device connected to the ACCESS.bus must be capable of being a bus master and
a bus slave.

5. The fast mode of the I2C-bus was omitted from this version of the ACCESS.bus
specification. The ACCESS.bus currently works only at 100Kbit/sec.

6. IOL = 6mA for the ACCESS.bus, vs. IOL = 3mA for the 12C-bus. The pull-up
resistors and the serial resistors for ACCESS.bus operation were decreased to allow IOL
= 6mA. _

7. The maximum capacitance per line was increased from 400pF for the 12C-bus to
1000pF on the ACCESS.bus.

8. The ACCESS.bus maximum cable length without a repeater is 10 meters. The I2C-
bus does not define a maximum cable length.

Electrical Specifications and Timing For I/O Stages and Bus Lines
The 1/O levels, and I/O current for ACCESS.bus devices are given in Table 1.2. The

ACCESS.bus timing is given in Table 1.3. Figure 1.15 shows the timing definitions for the
ACCESS.bus. .

ACCESS.bus Hardware Specification V2.2

Table 1.2: Characteristics of SDA and SCL I/b stéges for ACCESS.bus devices

standard-mode devices

Parameter . - Symbol Min. Max. Unit
Supply voltage measured at the host VDD 4,75 5.25 \'
Supply voltage measured at the device VDD 4.5 - A\’
LOW level input voltage: VL
fixed input levels v
VDD -related input levels -0.5 0.3VDpD
HIGH level input voltage: VIH
fixed input levels : v
VpD -related input levels 0.7vDD *1)
LOW level output voltage (open drain or :
open collector: VoL - 0 0.6 AY
at 6 mA sink current '
Ol.ltput fall time from VIH min. to VIL max. with toF
a bus capacitance from 10 pF to 1000 pF: ns
with up to 6 mA sink current at VoL, - 2502)
Input current each I/O pin with an input L -10 10 uA
voltage between 0.6 V and 0.9VpD max.

1) maximum VIH = VDD max. +0-5V

2) cp = capacitance of one bus line in pF. "Note that the maximum tf for the SDA and SCL bus lines
~quoted in Table 1.3 (300 ns) is longer than the specified maximum tQF for the output

stages (250 ns). This allows series protection resistors (Rg) to be connected between the

SDA/SCL pins and the SDA/SCL bus lines.

The minimum HIGH and LOW periods of the SCL clock specified in Table 1.3 determine the
maximum bit transfer rates of 100 kbit/s for standard-mode devices. Standard-mode ACCESS.bus
devices must be able to follow transfers at their own maximum bit rates, either by being able to
transmit or receive at that speed or by applying the clock synchronization procedure which will
force the master into a wait state and stretch the LOW periods of the SCL signal. Of course, in

the later case the bit transfer rate is reduced.

ACCESS .bus Hardware Specification V2.2

1-11

Table 1.3;: Characteristics of SDA and SCL bus lines for ACCESS,bus devices

standard-mode
Access.bus Unit
Parameter Symbol Min, Max, |
SCL clock frequency 3) fscL 0. 100 kHz
Bus free time between a STOP and START condition IBUF - 4,7 - us
Hold time (repeated) START condition. After this tHD;STA 4.0 - us
riod, the first clock pulse is generated

LOW period of the SCL clock tLOwW 4,7 - us
HIGH period of the SCL clock tHIGH 4.0 - us
Set-up time for a repeated START condition 1SU:STA 4.7 - us
Data hold time: tHD,DAT :
for Access.bus devices o) - us
Data set-up time tSU:DAT 250 - ns
Rise time of both SDA and SCL signals 2) R - 1000 ns
Fall time of both SDA and SCL signals tF - 300 ns
Set-up time for STOP condition tSU-STO 4.0 - us
Capacitive load for each bus line with pull up Chb - 1000 pF
Capacitive load for each bus line with current source - - 1500 pF
Cable length - - 10 meter
Pull-up resistor Rp 820 - Ohm
Serial resistor Rg - 51 Ohm
Cable Capacitance C - 70 pF/m

1) A device must intemé]ly provide a hold time of at least 300 ns for the SDA signal (referred to the
VIH min of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.

2) Rise time is measured from Vg to 0.7 VpDp.

3) See Section 2.8.3 for minimum data rate definition.

SDA

-
s then

L

tsu;0ar

...

-
1wl
[S,

1-12

Figure 1.15: Definition of timing on the ACCESS.bus

ACCESS.bus Hardware Specification V2.2

SECTION 2

ACCESS.bus

Base Protocol Specification

SECTION 2

ACCESS.bus

Base Protocol Specification

February 1994

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this-document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety. -

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips 12Cc patent conveys a
license to use these components in an 12C system, provided that the system conforms to 12C
specifications. -

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

2.0
21
22
23
24
2.5

2.6

2.7

28

29
2.10

ACCESS.DUS PrOtOCOL...cuuiiiieeereereniecresessererrorranmssssrsssssessesscsssssenssssssanes 2-1

General DESCTIPLON ..v.vuveeiisineiessnnerernresseesssssneesisesassnessessssnssssssesssan 2-1
MesSage FOTMAL.......cccvviviimeneenuenenrnereiosssnssenensiisstssainiinessssssssssssnnes 2-1
* Standard ACCESS bus Protocol Messages.....esssssrereeer e 22
AQAresSING ..vovvrererrerreieniescse st seees v eeerenerserseereratrenrereearanen 2-2
TAENGEICAION ..euuveeereeerinnreceeesasssronsssseresenmssssseranarsnnassessennessssssesssanes 2-3
2.5.1 Random versus Serial Device Numbers.........ccecvreeiisnsrcnnnanae 2-3
Capabilities INfOrmation........coeivesnneenreerenresrsnssssrisneessetosenisessiisieneeesses 24
2.6.1 Capabilities String Syntax and Semantics...........ccrverrerecescaneneenes 2-5
2.6.2 Standard Capabilities and CORVERHONSccoeverinirerieuierseraennannee 2-5
2.6.3 Binary Data in Capabilities SIngS.....cccceveeiriieiinnrieercneesicsnan 2-7
Configuration PrOCESS.......ceveeriuissrnssninioneessitnaseii it enanesntseanssene 2-7
2.7.1 Power-up/Reset Phasecueueerivmiiiiniiiinierenniiinercnnicinnnd 2-7
2.7.2 Identification Phase.....c.cccceveenrunns eeereeeessarnesesesessanaiseassrsnnann 2-7
2.7.3 Capabilities Phase.......ccovvveurmremimeinniirioenicseisisisansssasersiieeeieenes 2-8
2.7.4 Normal Operation........... .. 2-8
TIMING RUIES.....uueererriieiierieiiintiesssnarrsrersreeessesesnttesssssinsnssssensan 2-8
2.8.1 BUS TiMiNGuecociieiiiiiisiiiniineeseeensinnnisnnseitsesseecsssassessassnsannesen 2-8
2.8.2 Response TIMINE.....coccciirmrmrmrrrrerresiriieniaisiensearsnesssistenesreenes 2-8
2.8.3 Minimum Device Performance........ccovmerriimiiinrericnesscnnsssnencas 2-8
Exception Handlingcocieveiesererisiensessnnnnenennseneeecrinnrinissssssisenenns 2-9

Detailed Command/Message DeSCrPHONSuiiiiiiviiieiemmriersisissninnanensanes 2-10

2.10.1 Command Codingcccussreerirmrmemmrciiiitiuniierserntisserersrssesscan 2-10

2.10.2 Device Data Stream MeSSaBe .. cvvuecreeeriuuciminiriuiiiiiessesssoseensssasnss 2-11

2.10.3 Device Defined Control/Status (C/S) MeSSaZeS...vuuueererrerirrermrennns 2-11

2104 Pre-defined C/S Messages, INterface Parl...............ouremeesrssseenns 212

2.10.4.1 RESEL vuvieiianeeeerennriisussriisessireriiesennnrernasressnssassosss 2-12

2.104.2 AUENTON . e cveevereeereecseassiseresienssieieieeasieeresensnsases 2-12

2.104.3 Identification REGUESL.........v.ev.ererersersessrssrsensessecns 2-13

2.104.4 Identification REPIYcevevevereueerresesseseremenssesasnss 2-13

2.104.5 Assign AJAressovvereemneiineeiniiinrreeeeereisennereenneans 2-14

2.104.6 CapabilitieS REQUESE ...eevvereeeiiirivrienianaisneaasecarenenss 2-14

2.104.7 Capabilities Reply..ccccccciniiiiinniriniiniersennnncanesne 2-15

2.104.8 Enable Application RePOrt..........ccvveiiierransanasassonens 2-16

2.104.9 Presence ChecK...vvemeeeerememiiiiiiinniennirieneeienececeunsen 2-16

2.10.4.10 Resource Request (OpHONal)........cocorereeruruereraesesasns 2-16

2.10.4.11 Resource Grant (Optional)..........ccccoveervnecvreeernecens 2-17
2.104.12 Vendor Reserved Commands (Optional, Interface

Part) I OO 2-18
2.10.5 Pre-defined C/S Messages, Application Part..........cccceeuerenrennncasd 2-18
2.10.5.1 Application Hardware Signal (Optional)...................2-18
12.10.52 ApPHCAHOD TESt cvvvvvvreernrrresennecsessssssesesssssssssans: 219 -
2.10.53 ApPIiCtion TEStREPLYceeeeeremseeeecrecerseressssssins 2.19
2.10.5.4 . Application Status Messageccevevrreerrenneenenns 2-20
2.11 Device Power Management (Optional)......... e s s e 2-20
2.11.1 Device Power Management Command..............ccceeveerruerineernenene 2-22
2.11.2 Device Power Usage ReplY ... cccciieirnnciieireereinnneieeieeeeeerennenne s 2-22
2.11.3 Power Management Capabilities Stnng 2-22
2.11.4 Power Management Resource Request commandceeevveuneneeess 2-23
2.11.5 Power Management Resource Grant commandeeverreenenenes 2-24
2.11.6 Power Management StAtus MESSAEE......ovvureereerrsemseesesessesssssnens 2-24
- 2.12. Device Bandwidth Management (Optonal)cecevevnuneeereeenennseeeeeneesere 2-25
2.12.1 Bandwidth Management Capabilities String.........oceceeverreeseriesnens 2-25
2.12.2 Device Bandwidth Management Commandceeuruennnnnsnsd 2-26
2.12.3 Device Bandwidth Usage RepPlY...ccceuveereririinrieeiiirrinesrerencieesennas 2-26
2.12.4 Bandwidth Resource Request command.............oveeeveeeenenencerennnnsd 2-26
2.12.5 Bandwidth Resource Grant command.............c..eeeveeeeeerneerenniserenes 2-27
APPENdiX A..iiiiiieriierrerereriiineerieeeireeseescessssersanses .. 2-28

2.0 ACCESS.bus Protocol

2.1 General Description
Every device on the bus must support the ACCESS .bus physical layer interface.
A message transmits information between a device and the computer or between the computer and
one or more devices. There is one exception: a device may attempt to reset other devices assigned
to the same address by sending a Reset message to itself.
Initially, all devices respond to a default power up address. During the configuration process the
computer assigns a unique address to every device on the bus. ACCESS.bus supports multiple
devices of the same type, or different types without switches or jumpers.
The bus supports dynamic reconfiguration while the system is operating. Connecting new devices
shall not require powering down or rebooting the system before the new devices can be used ("hot
plugging" is permitted).

2.2 Message Format

ACCESS.bus messages have the following format:

Bit Number
MSB LSB
Byte Number 7 6 5 4 3 2 1 0
o1 . Gestaddr 0 Destination address

2 sreaddr 0 Source address
3 P length ~ Protocol flag,

' message length
4 body 1 to 127 bytes

Length + 4 checksum

Figure 2.1: ACCESS.bus Message Format

Messages are either Device Data Stream (P=0) or control/status (P=1), as indicated by the protocol
(P) flag. The minimum length of a message shall be four bytes. The maximum theoretical length
of a message is 131 bytes (127 data bytes and four bytes for overhead); the maximum practical
length is constrained by the transmission speed and the maximum time a device may hold the bus
as master (see Timing Rules). '

The message checksum shall be computed as the logical XOR of all previous bytes, including the
message address. The checksum shall be computed such that the logical XOR of all previous bytes

plus the ECC is equal to zero (0). A device or the computer shall only execute commands with a
valid checksum.

ACCESS.bus data follows Big Endian bit order (see section 1). The most significant bits are
always sent first.

The standard byte order for multibyte integers is Big Endian.

‘ ACCESS.bus Base Protocol Specification V2.2 - _ 2-1

23

Example:

STETATH T AT AT TATETATF]

‘Where:

S START Signal

6E destination address (device default)
A Acknowledge pulse from receiver
50 source address (computer)

81 Control/Status length 1

F1 Identification Request

4E Checksum

P STOP Signal

Figure 2.2: ACCESS.bus Message Example

Standard ACCESS.bus Protocol Messages

The ACCESS.bus protocol defines nine required interface messages that are summarized below.

Parameters defined within the body of the message are listed in parenthesis.

Table 2.1: Protocol Messages

Computer-to-device Messages Purpose

Reset() Force device to power-up state and default
ACCESS.bus address.

Identification Request() Ask device for its "identification string.” -

Assign Address(ID strng, new addr) Tell device with matching "identification string” to

change its address to "new address."

Capabilities Request(offset)

Ask device to send the fragment of its capabilities
information that starts at "offset."

Enable Application Report Enable or disable a device to send application reports to
the host computer
Presence Check Check if the device is present on the bus at the specific

address.

Device-to-computer Messages

Purpose

Attention

Inform computer that a dévice has finished its power-
up/reset test and needs to be configured.

Identification Reply(ID string)

Reply to Identification Request with device's unique
"identification string."

Capabilities Reply(offset, data frag)

Reply to Capabilities Request with "data fragment," a
fragment of the device's capabilities string; the

computer uses "offset” to reassemble fragments.

2.4 Addressing

2-2

ACCESS.bus addresses follow the address format defined below The LSB shall always be zero (0)
indicating a master transmitter or write operation.

MSB LSB
[A7TA6TAS A4 JAS]AZ] AT] O]

Figure 2.3: ACCESS.bus Address Format

- ACCESS.bus Base Protocol Specification V2.2

2.5

The following ACCESS.bus addresses are pre-assigned (even numbers only):
50h . host computer address
6Eh power up default address for all devices
02-4Eh; 52-6Ch; 125 assignable ACCESS.bus device
- 70-FEh addresses
An ACCESS.bus computer 1mplememauon must support the 125 assignable device addresses
noted above.

The computer address shall never be changed unless the computer wants to simulate a device. This
feature may be useful for debugging.

At power up or after a reset command, devices will respond to the default address (6Eh).

The least significant bit of the source address field which is not used for addressing (indicates R/W
in destination address) is reserved for future protocol extension. Conforming devices shall transmit
this bit as zero and ignore received messages in which this bit is one until such extensions, if any,
are defined.

Identification

ACCESS.bus is a bus-topology network that uses unique identification strings to distinguish
devices. These strings are structured as follows:

protocol revision: 1 byte ("B")

" module revision: 7 bytes (e.g., "V1.0 ")
vendor name: 8 bytes (e.g., "DEC ")
module name: 8 bytes (e.g., "LK501 ™)
device number: 32-bit signed integer

The protocol revision shall be a single byte used to identify the protocol 1mplemcntauon to the
computer. This specification defines protocol revision "B" (42h). Any new protocol revisions shall
be approved by the ACCESS .bus Industry Group.

The module revision, vendor name, and module name strings are left justified ASCII character
strings padded with spaces. The content of these fields shall be determined by the device vendor.

The device number string shall be a 32-bit two's complement signed integer and may be either a
. random number (if negative) or a unique serial number (if positive).

It is important to note that the host software should never attempt to recognize a device based on
the hardware ID string. Host software should always rely on the capabllmes string fields for device
identification.

2.5.1 Random versus Serial Device Numbers

Interactive devices may use either a random number or a (fixed) serial number in their
Identification Reply messages. Unique serial numbers are more expensive to implement,
but allow device identification and usage to be remembered between sessions when the
system has been turned off or device hot plugged.

When devices of the same type have to be physically identified, a fixed serial number may
be used. Example:

ACCESS.bus Base Protocol Specification V2.2 : : L ' 23

2.6

24

Three identical ACCESS.bus laser printers are located in three different offices. Each
printer reports a fixed serial number that is interpreted by the user 's software as the
physical location of the printer.

The purpose of the 32-bit device number is to distinguish otherwise like devices with the

_ same firmware. To aide ACCESS.bus management software, serial numbers are reported
as positive (2's complement integers), while random numbers are always reported as
negative,

If a pseudo random number is used in the Identification Reply message, it must be
produced in a way that will help distinguish like devices.

Guideline: The number of clock cycles since power on at the time a command is received
may be used as a pseudo random number. The natural dispersion of resonator frequencies
is usually sufficient to separate otherwise identical devices.

A new pseudo random number must be generated if a reset command is received. The
-pseudo random number shall not change between identify reports unless an intervening
power-up or reset command occurs.

Capabilities Information

Device capabilities is the set of information that describes the functional characteristics of an
ACCESS.bus peripheral. The purpose of capabilities information is to allow software to recognize
and use the features of bus devices without prior knowledge of their particular implementation. By
having locator devices report their resolution, for example, generic software can be written to
support a range of device resolutions. Capabilities mformauon provides a level of device
independence and modularity.

The structure of capabilities information is designed to be simple and compact for efficiency, but
also extensible to support new devices without requiring changes to existing software or
peripherals. These objectives are supported by making the structure hierarchical and representing
capabilities information in a form that applications (and humans) can use directly. The capabilities
information shall be an ASCII string constructed from a simple, readable grammar. The
capabilities string for a locator might read as follows:

(

prot(locator)

type(mouse)

model(VSXXX-AA)
buttons(1(L)2(R)3(M))

dim(2) rel res(200 inch) range(-127 127)
d0(dname(X))

d1(dname(Y))

)

Capabilities information is normally constant for a device. However, the capabilities of some
devices may change over time. Devices whose capabilities change will notify the host with an
application Status Message when their capabilities have changed. The information shall describe
the potential operating modes and characteristics of a device. From the point of view of an
ACCESS.bus peripheral, capabilities information can simply be a string of bytes which is
transferred to the computer via the Capabilities Request and Capabilities Reply commands.

Capabilities information must be placed in the capabilities string in the following order:

prot()
typeQ

ACCESS.bus Base Protocol Specification V2.2

model()

pwrQ

bwm()

protocol specific portions of the Capabilities string
‘device specific portions of the Capabilities string

prot, type, and model must always be the first three items in the capabllmes string and they must
occur within the first sixty-four (64) characters. These three properties are used by the host
software to identify the appropriate device driver for the particular device.

2.6.1 Capabilities String Syntax and Semantics

Capabilities information shall be an ASCII string constructed from the simple grammar
as follows.

1. The terminal symbols of the grammar are STRING, TAG, WS, *(', and *)".

_ 2. WS is a sequence of one or more white space characters: SPACE, TAB, RETURN or
LF.

3. A STRING is a sequence of one or more non-white space characters. All Capabilities
data shall be represented as STRING: integers (123), floats (+3.0e8), strings (keyboard).
Special characters may be included in STRINGs by escaping them as \xHH where HH
represents two hexadecimal digits. SPACE, TAB, RETURN, LF, °(, *), and *\' are
special characters and must be escaped as \xHH 1o include them in STRINGsS.

4. A TAG is a STRING which is immediately followed by a (..
5.”(and “)' are open and close parenthesis used for grouping.

6. The grammar allows STRINGs to be formed into lists separated by white space, lists
with tagged elements, and nested lists according to the following rules (BNF).

Capabilities ::= (cap string)
cap string ::= STRING
cap string ::= cap string WS§ cap string
cap string ::= TAG cap string)
cap string ::= TAG cap string) cap string
Notes: _
1. All 8-bits of characters are significant. This is to allow 8-bit muitinational character
sets such as ISO Latin-1 to be used. -
2. Keyword comparisons are not case sensitive.
3. Capabilities are hierarchical. The meaning of a keyword within a tagged list depends on
the tagged list in which it appears.

2.6.2 Standard Capabilities and Conventions

Certain keywords appearing at the top level of a capabilities string are defined to have
standard meanings within the ACCESS.bus protocol as follows:

Keyword Meaning

protQ) The “prot(Q” entry identifies the generic protocol or device
type to system software. prot(} is the device driver's view
of a device. prot() defines the behavior of a device in terms
of commands and responses in addition to those defined in

the Base Protocol.
prot(keyb) : generic keyboard
prot(locator) " generic locator

ACCESS.bus Base Protocol Specification V2.2 N 2-5

2-6

prot(text)

generic text

typeQ The “type()" entry is intended to identify the device type to
the user in a recognizable form. type() is a user's view of a
device. That is, a joystick, mouse, or whatever. It is also a
second level identifier of the device used by the system
software. ‘

type(keyboard) Keyboard

type(mouse) Mouse

type(digitizer) Digitizing tablet

type(tball) Trackball

type(ptrstick) Force activated joystick (typically embedded in keyboards)

type(touchscn) Touchscreen

type(dial) Dials, arrays of dials, and other single axis valuators

type(swpad) Switch pads, such as those used for game control, where a set
of switches are used to control position and functions. (as
opposed to keyboard)

model() The "model()" entry is provided to present the full model

: name to the user if different from the module name. The

"model()" entry is optional. It is also a third level identifier
of the device used by the system software.

pwr() Power management capability string, see Section 2.11.3

bwm() Bandwidth management capability string, see Section 2.12.1

The following capability usage convention is recommended to maximize compatibility
between hardware and software from different vendors.

1. Tags used as kéywords to identify device features should be no more than eight

characters in length (only the first eight characters are significant). Characters A-Z, a-z,
and 0-9 are assumed to be handled transparently on all systems.

2. Device features or events that are represented by bit positions should be numbered

sequentially starting with "1" for the least significant bit (bit 0). For example, locator
buttons within a 16 bit keyswitch word might be identified as
"buttons(1(L)2(R)3(M))". 1 is related to bit 0, 2 is related to bit 1, and 3 is related to
bit 2.

Example: The Keyswitch word represents the possible 16 functional buttons of a locator.

LSB

MSB KEYSWITCH WORP

M|R L

The first bit of the first byte transmitted

Figure 2.4: Keyswitch Word

3. Features controlled by a numeric value parameter can be described by the feature name as

a tag followed by the parameter range. If the range is from zero to maximum, the zero
minimum value can be omitted. Keyclick volume ranging from 0 (off) to 7 (maximum)
can be described as "click(7)" for example. It is suggested that these values not be
normalized. By not normalizing it is possible to preserve the full resolution of the

ACCESS.bus Base Protocol Specification V2.2

device, thus allowing the computer to determine the smallest meaningful volume
increment. _ o '

Specific additional capabilities are defined in géneric device protocol specifications.
Generic specifications for keyboards, locators, and text devices have been developed to
date. '

2.6.3 Binary Data in Capabilities Strings

To include binary information in the Capabilities string a new keyword bin is defined.
The binary data within the Capabilities string has the following format:

bin(count (binary data bytes))
where count is an integer count of the number of binary data bytes.
2.7 Configuration Process

The configuration process shall be used to detect the devices that are present on the bus, assign
each device a unique address, and connect devices to the appropriate software driver. Configuration
shall occur at system start-up, or at any time when the computer detects the addition or removal of
a device.

2.7.1 Power-up/Reset Phase

> When reset or powered-up, a device shall always revert to the default address and send an
Attention message to alert the computer to its presence. At system start-up or
reinitialization, the computer shall send a Reset message to all ACCESS.bus addresses in
the ACCESS.bus device address range to insure that all devices on the bus respond at the
power up default address.

2.7.2 Identification Phase

To begin address assignment, the computer sends an Identification Request message at the
device default address. Every device at this address must then respond with an
Identification Reply message. As each device sends its message, the ACCESS.bus
physical layer arbitration mechanism automatically separates the messages based on the
identification strings. The computer can then assign an address to each device by including
the matching identification string in the Assign Address message. A device that receives
this message and finds a complete match with the identification string moves its device
address to the new assigned value. As soon as a device has a unique address, it shall
change to ‘on line state' in a 'disable mode'. in this state the device is waiting to receive
an "Enable Application Report" control message from the host to start sending its
application reports. '

The ACCESS.bus physical layer bus protocol allows multiple devices on the bus at the
same time, if those devices are transmitting exactly the same message. In the rare event
that two like devices report the same random number or are mistakenly assigned to the
same address, each interactive device transmits a Reset message to its assigned address
immediately prior to sending its first data message after being assigned a new address. The
self-addressed Reset message forces other devices at the same address back to the power-up
default address, as if they had just been hot-plugged. The message guarantees that each
device has a unique address, but not until the device is actually used. The pseudo random
number (or serial number, if available) distinguishes devices at identification time before
they are used, allowing the computer to inventory which devices are present.

ACCESS.bus Base Protocol Specification V2.2 B | : 2-7

2.8

2.7.3

2.7.4

Capabilities Phase

After assigning a unique address to a device, the computer retrieves the device's
capabilities string as a series of fragments using the Capabilities Request and Capabilities
Reply messages. The computer then parses the capabilitics string to choose the
appropriate application driver for the device. The parsed string shall also be made available
to application programs using the device.

Normal Operation - _
During normal operation, the ACCESS.bus manager periodically checks the presence of

all devices on the bus. If a device is found to be missing, the bus manager will notify the
device driver with a Device Disconnected message and will update the device table.

Timing Rules

2.8.1

2.8.2

.2.8.3

Bus Timing

. Since the ACCESS.bus may be shared by multiple peripheral devices, it is important to

assign the bus bandwidth in such a way that every device will be able to send (or receive)
its messages on time. Assuming that the bus bandwidth is sufficient to serve all the
devices, we need a mechanism that will control the time duration and the rate that each
device occupies the bus. This mechanism is the Bandwidth Management that is described
later in this section. Since the Bandwidth Management is optional it is important that
each device will obey the following timing rules:

1. A device must allow at least fifty microseconds (50 microseconds) between releasing
bus mastership at the end of a message and requesting to become bus master again.
This is to give other devices a chance to access the bus without arbitration.

2. ACCESS.bus interfaces shall not hold SCL low for more than two milliseconds (2ms).
A watchdog timer or other provision shall be implemented by each device to assure it
releases SCL before the two millisecond (2ms) limit is reached.

Response Timing

Time limits for certain commands to execute are specified so that the computer can
determine when all the devices present have had sufficient time to respond (time out). The
following limits apply:

1. Devices shall coniplete the Reset command or the power on reset within 250ms. This is
believed to be long enough for basic power up self test (from stable power) without
causing excessive delays. All devices should attempt to minimize this time.

2. Devices shall respond to all other commands that require a response within forty
milliseconds (40ms).

3. If a command can be responded to by more than one device, the time limit shall be
extended to forty milliseconds (40ms) since the last device that responded.

Minimum Device Performance

Each device connected to the ACCESS.bus, including the host, can affect the overall bus
performance. When a device is transmitting as a bus master if the device is too slow it
occupies the bus for a longer time than is necessary and reduces the overall bus
performance. Second, as a listener, if a device is too slow, it slows the transmitting speed
of the master device which also results in lower bus performance.

ACCESS.bus Base Protocol Specification V2.2

To guarantee good ACCESS .bus pcrformance all ACCESS.bus devices should comply
with the following requirements.

1.

The host interfacc acting as master transmitter shall transmit at a minimum data rate of
8 Kbyte/sec (assuming that the receiver does not stretch the clock during the message).

. The host interface acting as a slave receiver shall not slow down the data rate to less

than 8 Kbyte/sec (assuming that the transmitter is faster than 8 Kbyte/sec).

. Devices that in nominal bandwidth mode require 50% to 100% of the bus time shall

transmit at a minimum rate of 8 Kbyte/sec (assuming that the receiver does not stretch
the clock during the message) and as a receiver shall not slow down the data rate to less
than 8 Kbyte/sec (assuming that the transmitter is faster than 8 Kbyte/sec).

. Devices that in nominal bandwidth mode require 25% to 50% of the bus time shall

transmit at a minimum rate of 7.5 Kbyte/sec (assuming that the receiver does not
stretch the clock during the message) and as a receiver shall not slow down the data rate
to less than 7.5 Kbyte/sec (assuming that the transmitter is faster than 7.5 Kbyte/sec).

. Devices that in nominal bandwidth mode require 10% to 25% of the bus time shall

transmit at a minimum rate of 7 Kbyte/sec (assuming that the receiver does not stretch
the clock during the message) and as a receiver shall not slow down the data rate to less
than 7 Kbyte/sec (assuming that the transmitter is faster than 7 Kbyte/sec).

. Devices that in nominal bandwidth mode require 0% to 10% of the bus time shall

transmit at a minimum rate of 6 Kbyte/sec (assuming that the receiver does not stretch
the clock during the message) and as a receiver shall not slow down the data rate to less
than 6 Kbyte/sec (assuming that the transmitter is faster than 6 Kbyte/sec). '

A peripheral device or host interface acting as slave receiver shall ignore any data on the
bus, therefore not affect the transmission data rate, if the destination address of the
message does not maich the device's address. The peripheral device or host interface
shall start listening to the bus again after they have detected the previous message Stop
condition.

2.9 Exception Handling

The following general requirements and recommendations are defined for handling ACCESS.bus
exception conditions. Additional requirements may be defined by the individual device protocol
specifications.

1.

Arbitration Loss - If a device detects that it has lost arbitration, the device shall cease
transmitting and then try again to become bus master to resend the message. If the
device was trying to send an Attention, Identification Reply or Capabilities Reply -
message then the device should get bus ownership as soon as possible, and try to send
the message again. The device should try as many times as necessary until the message
is received by the host. .

If the message is an application report, it is the device's decision whether to discard the
message, or to re-send the message. In general, devices should retry as many times as
necessary to win arbitration and send their message.

2. Negative Acknowledge - If a device transmits a byte which is negatively acknowledged

(no receiver, or rejected for some reason), or if the bus times out, the device shall abort
the transfer immediately by generating a Stop condition, If the device was trying to
send an Attention, Identification Reply or Capabilities Reply message then the device
should get bus ownership as soon as possible, and try to send the message again. The
device should try as many times as necessary until the message is received by the host.

ACCESS.bus Base Protocol Specification V2.2 : : - : 29

2.10

2-10

If the message is an application report, it is the device's decision whether to discard the
message, or to re-send the message.

. Checksum Error - If a-device detects a checksum error in a received message, the
message data shall be ignored. '

. Premature STOP - If a device detects a premature STOP signal before the end of a
message is reached, the message data shall be ignored.

. If the computer detects a checksum error or premature STOP condition, it is suggested
the computer log the error and re-issue its most recent request to that device. A large
number of interface errors may indicate a software error or faulty hardware
configuration. In this case, it is suggested the computer notify the user and attempt to
restart the configuration process.

6. Repeated STOP - A device should noi respond to any event of a repeated STOP signal.

7. Unrecognized Commands and Parameters - If a device receives a command with valid

checksum but does not recognize the command op-code, the entire command shall be
ignored. If a device receives a command with valid checksum but does not recognize the
value of a required parameter, the entire command shall be ignored. If a device receives a
command with valid checksum that includes additional data beyond that expected, it is
recommended the additional data be ignored, however, the device may execute the
command.

8. A device will never hang up the bus by pulling the SCL or the SDA lines to low level

for more than 2msec. Every device has to have a watchdog mechanism to release the
bus after the 2 msec period. '

9. A device must respond to the default address (6EH) before it is assigned an address by

the host, and to its assigned address afterwards. As an exception, a device can
negatively acknowledge the message when the device is busy with internal data
processing. A well behaved device should minimize the number of these situations.

Detailed Command/Message Descriptions

2.10.1

Command Coding
For the purpose of illustrating message encoding, the following notation is used:

PLLLILLL ‘P’ is a 1-bit protocol flag:
P=0 denotes a data stream;
P=1 denotes a control/status message
LLLLLLL isa 7-bit length field that encodes values 0-127

ddddddd) = 7-bit destination ACCESS.bus address plus 0 as the LSB
sssssssO = 7-bit source ACCESS.bus address plus 0 as the LSB
xxxxxxxx = 8-bit message op-code

€Coeeeee = 8-bit checksum

Numeric values are always transmitted MSB first.

ACCESS.bus messages are either Device Data Stream (P=0), or Control /Status (P=1).
Data Stream messages always refer to the application part of a device, as opposed to the
interface part. The coding of Data Stream messages is dependent on the device. They are
not pre-defined or restricted by the ACCESS.bus protocol.

ACCESS.bus Base Protocol Specification V2.2

Data Stream Msg Control/Status Msg
ddddddd0 ddddddd0

sssssssO sssssssO
OLLLLLLL ILLLLLLL _
| Xxxxxxxx op code
body[0-127] }
| _ body[0-126]
(vevevevy |

€coceeee

The first data byte of Control/Status messages (P=1) shall always be an op-code.
Control/Status messages may refer to either the application part or the interface part of a
device. Pre-defined Control/Status op-codes (messages) are used to initialize and configure
ACCESS.bus devices. A range of Control/Status op-codes are reserved for private use by
devices and will not be pre-defined as part of the ACCESS.bus protocol.

The breakdown of ACCESS.bus message types is shown in the following diagram:

ACCESS.bus Message
P=0 P=1
] 1
Data Stream Control/Status -
~ Application part
' Device dependent op-code=0xxxxxxx op-code=1xxxxxxx
I |
Data defined Pre-defined

Application part
Device dependent

device independent

2.10.2

2.10.3

op-code=10xxxxxx

op-code=11xXxXXXxXX

Application part

Interface part

Figure 2.5: ACCESS.bus Message Types Breékdown
Device Data Stream Message

These messages are usually used for the bulk of the device's data. The intent is that the
most common messages (keypress reports, locator movements, etc.) should be easiest to
send and have the lowest overhead. Device Data Stream messages are distinguished by the
Protocol flag bit being zero. The body of these messages are defined by the individual
device protocol specifications.

Devices are not permitted to send device data stream messages at the power on Default
Address. After a successful Assign Address command, devices shall change into an on line
state in a disabled mode. After receiving an Enable Application Report command the
device should send a self addressed reset message immediately prior to transmission of its
first application report.

Device Defined Control/Status (C/S) Messages

Device control or status information shall be sent with the protocol flag set to one
(P=1). Op-codes in the range 00h to 7Fh are reserved for device defined peripheral
messages (application part). Refer to the individual device protocol specifications for
details. :

ACCESS.bus Base Protocol Specification V2.2 . 2-11

2.10.4 Pre-defined C/S Messages, Interface Part
Interface Part Control/Status messages are use_d to control the ACCESS .bus itself.
2.10.4.1 Reset

A Reset message shall be used to instruct the addressed device(s) to reset to the power up
state.

Format:

dddddddo

sssssssO - o
10000001 (81h, P=1, length=1)
|

11110000 (FOh, Reset op-code)
|

©CCCoeCe

This command is intended to be completely equivalent to power on reset including
changing of device address to the Default Address, power on self testing, and transmission
of an Attention message at the Default Address.

Notes:

1. The device shall ignore all commands from the computer until it has completed power-
up processing and transmitted a successful Attention message. This is the only
command which may cause a device to temporarily ignore bus messages.

2. A device must wait at least eight milliseconds (8ms) after its ACCESS.bus hardware is
reset before transmitting to insure its ACCESS.bus hardware has synchronized with
any message frame in progress.

3. The Reset command must be completed within 250ms (excluding the time spent
waiting to become bus master).

4. Because the ACCESS.bus does not have a General Call or Broadcast address, the
ACCESS.bus shall be reset by issuing Reset commands to all 125 standard
ACCESS.bus device addresses.

2.10.4.2 Attention

An Attention message shall be sent by a device to the computer. This message notifies
the computer that a device needs attention after power up or reset.

Format:

ddddddd0

sssssssO

10000001 (81h, P=1, length=1)

| ‘

11100000 (EOh, Attention op-code)
|

€COCOooCCe

2-12 . ACCESS.bus Base Protocol Specification V2.2

Notes:

1. This message must be transmitted within 250m-s after a reset command or stable
power is applied (excluding time spent waiting to become bus master).

2. A device must wait at least eight milliseconds (8ms) after its ACCESS.bus hardware
is reset before transmitting to insure its ACCESS.bus hardware has synchronized
with any message frame in progress.

3. The device must ignore all commands from the computer until it has completed
power-up processing and transmitted a successful Attention message. Devices that
fail must not respond to any commands. '

4. Because Attention is only generated after power on or reset, it will always be
transmitted at the Default Address. Receiving an Attention message shall indicate to
the computer that a device is present on the bus and awaiting configuration. :

2.10.4.3 Identification Request

An Identification Request message shall instruct the addressed device(s) to send a complete
identification report (see Section 2.10.4.4 - Identification Reply).

Format:

ddddddd0
> sssssssO .
10000001 (81h, P=1, length=1)
|
11110001 (F1h, Identification Request op-code)
I
€COCCCee

The Identification Request message will cause all devices at the Default Address to send a
unique identification string so that the computer can assign each device to a distinct
address.

2.10.4.4 Identification Reply

The Identification Reply message shall be issued by a device in reply to an Identification
Request message. The reply shall consist of a string that identifies the device hardware. A
four byte pseudo random number (or serial number if available) shall be included in order
to distinguish like hardware devices.

Format:

ddddddd

sssssssO

10011101 (P=1, length=29)

| :

11100001 (E1h, Identification Reply op-code)
protocol revision (1 byte, "B")

module revision - (7 bytes, e.g., "V1.0 ")
vendor name (8 bytes, e.g., "DEC ")
module name (8 bytes, e.g., "LK501 ")
device number (32 bit signed integer)

| .
€cocoece

ACCESS.bus Base Protocol Specification V2.2 - ' _ 2-13

2-14

The module revision, vendor name, and module name shall be left justified ASCII strings
padded with the space character (20h). See "Random versus Serial Device Numbers” for a
description of the device number.

2.10.4.5 Assign Address

An Assign Address message shall be issued by the computer to instruct the addressed
device(s) with matching identification strings to move to the specified device address.

Format:

ddddddd0

sssssssO :

10011110 "~ (P=1, length=30)

|

11110010 (F2h, Assign Address op-code)

protocol revision (1 byte, "B™)

module revision (7 bytes, e.g., "V1.0 ™)

vendor name (8 bytes, e.g.,, "DEC ")
- module name (8 bytes, e.g., "LKS01 ™)

device number (32 bit signed integer)

new A.b address (1 byte)

I

€coceoce

When a device receives this command and finds a complete match in the protocol
revision, module revision, vendor name, module name, and device number field it moves
its address to the new assigned value. If the device is successfully assigned a new address,
it shall be able to respond to messages at the new address immediately, that i is, on the
next valid ACCESS.bus message frame.

If the identify information does not match that of the receiving device, the entire message
shall be ignored.

Devices shall not transmit user data while at the Default Address. If the Assign Address is
successful, the device change to an on line state waiting for Enable Application Report
message to start sending its application reports. Once an Enable Application Report
message is received, the device shall send a self addressed reset command on its new
address immediately prior to sending its first data report.

2.10.4.6 Capabilities Request

A Capabilities Request message shall be issued by the computer to a device to instruct
the addressed device to reply with a Capabilities Reply. The Capabilities Reply shall
contain data starting at "offset”.

Format:

ddddddd0
$ssssssO

. 10000011 (P=1, length=3)

I .
11110011 (F3h, Capabilities Request op-code)
offset (16-bit unsigned integer)

I

CCOCOOCC

ACCESS.bus Base Protocol Specification V2.2

The Capabilities Request and Capabilities Reply messages form a protocol for
transferring an arbitrary byte-string from the device to the computer, via a series of
fragments. "Offset" shall be the index (from 0) into this string. To simplify the device's
implementation of this protocol, "offset” shall be restricted to three values:

"send first" zero, indicating the computer wants to start over at the beginning;

"send again” the offset from the most recéritly transmitted Capabilities Request,
indicating the computer did not receive a response and wants a retransmit;

"send next” the offset from the most recently received Capabilities Reply plus the
number of bytes in the message fragment. (new offset = old offset + fragment length)
(fragment length = message length - 3).

With these restrictions the computer can make three requests: start over, send current, and
send next. See Capabilities Reply message for further details.

2.10.4.7 Capabilities Reply

A Capabilities Reply shall be used to reply to a Capabilities Request message with a
fragment of data starting at "offset".

Format:
dddddddo

. sssssssO

"~ 10LLLLLL (P=1, length=3-35)

| .
11100011 (E3h, Capabilities Reply op-code)
offset (16-bit unsigned integer)
data (0-32 bytes)
!
ccoceeee

The protocol is designed to be simple for the device to implement: The device is free to
choose the most convenient fragment size from one message to the next.

The only state information the device should need to maintain is the current offset and
length of the most recently transmitted fragment.

On receiving a Capabilities Request message, the device shall examine the "offset" field:

» If equal to zero, the device shall set the current offset to zero and send the fragment from
offset zero (0).

* If equal to the current offset, the device shall re- send the fragment from the current
offset.

« If equal to the "current offset” + "fragment length", the device shall update the current
offset (current offset := current offset + fragment length) and then look up (or
calculates) the next fragment to send and sends it.-

+ If the device has reached end-of-string, it shall send a fragment with the next offset but
zero data bytes. This will indicate an end of string.

« Otherwise, the device shall set the "current offset” to zero and send the fragment from
offset 0.

ACCESS.bus Base Protocol Specification V22) | 215

2-16

2.10.4.8 Enable Application Report

An Enable Application report command shall be used to instruct an on line device to start
(Enable) or to stop (Disable) sending application reports. -

Format:

ddddddd0

sssssssO

10000010 ~ (82h, P=1, length=2)

|

11110101 (F5h, Enable Application Report op-code)
000000XX {(XX=00 for disable, XX=01 for enable)
cceeeeee _

Device in the disable mode shall not send application reports.

2.10.4.9 Presence Check

This command is used by the host to check if a device is connected to the bus and
responding to its ACCESS.bus address. This message requires no response from the
device. The host uses the device acknowledge bits in each byte (see section 1) as an
indication for the device presence.

Format:

dddddddo

sssssssO

10000010 (82h, P=1, length=2) -

|

11110111 (F7h, Presence Check opcode)
00000000 (for future use)

€CoCoece

2.10.4.10 Resource Request (Optional')

A Resource Request shall be sent by a device to request a resource from the computer.
The Resource Request command is optional, but is used by the Power Management and
Bandwidth Management commands.

Format:

Adddddd0

sssssssO

100xxxxx (P=1, length=n)

|

11100101 (E5h, Resource Request op-code)
res code (resource designator)

data (optional data)

|

ccoceeee

Table 2.2 lists supported resource codes.

ACCESS.bus Base Protocol Specification V2.2

Table 2.2: Supported Resource Codes

Resource Code

ghex:

01

Description

Request ACCESS.bus address for private use.
Data byte 1, if specified, shall be the desired
ACCESS.bus address.

02

Relinquish ACCESS.bus address. Data byte 1
shall be the ACCESS.bus address to be
relinquished. :

03

Request time and date. No additional data
provided.

Write data request. The host saves a block of data
for the device. See section 2.11.4, Power
Management, for additional information.

05

Read data request. The host sends the block of
stored data back to the device. See section
2.11.4, Power Management, for additional
information.

Request continued bus power. The device.
requests that the host continue to provide power
to it so that it can complete an operation in
progress. See section 2.11.4, Power
Management, for additional information.

10

Request bandwidth from the host. The device
requests permission to use additional bus
bandwidth. See section 2.12.4, Bandwidth
Management, for additional information.

2.10.4.11 Resource Grant (Optional)

The Resource Grant command shall be sent by the computer to a device to indicate that a
requested resource has been granted to the requesting device.

Format:

ddddddd0
sssssssO
100xxxxx
I
11110100
res code
status

data
|
0CeCCooe

(P=1, length=n)

(F4h, Resource Grant op-code)
(resource designator)

(O=success, 1=unsupported,
2=failed- try again later, 4=failed)
(optional data)

Table 2.3 lists supported resource codes.

ACCESS.bus Base Protocol Specification V2.2

2-17

2-18

Table 2.3: Supported Resource Codes

"~ Resource Code Description

hex
01 ACCESS.bus address granted for private use.
Data byte 2 shall be the ACCESS.bus address
02 Response to relinquish ACCESS.bus address.
Data byte 2 shall be the ACCESS.bus address
: relinquished.
03 Current time and date.

Data bytes 2,3 = year

Data byte 4 = month

Data byte S = day of month
Data byte 6 = hour

Data byte 7 = minute

Data byte 8 = second

Data byte 9 = .01 second

2.10.4.12 Vendor Reserved Commands (Optional, Interface_Part)

A small range of op-codes are reserved for vendors to invoke private functions for testing,
alignment, or set-up at manufacturing time. These commands might be used to down load
an EEPROM with a serial number for example. These commands are device dependent and
should not be used during normal ACCESS.bus operation. If these commands invoke any
private modes, it is recommended that such modes be exited by the Reset command (op-
code FOh).

Op-codes CO to C8 hex are reserved for vendor specific use.

2.10.5 Pre-defined C/S Messages, Application Part

2.10.5.1 Application Hardware Signal (Optional)

The Application Hardware Signal shall be sent by a device to the computer. It shall be
used to instruct the computer ACCESS.bus controller to generate a high priority hardware
signal.

Format:

ddddddd0

sssssssO

10000010 (P=1, length=2)

I

10100000 (AOh, Application Hardware Signal op-code)
sigcode (signal code 1=reset, 2<halt, 3=attention)

I _
ledevesdd

The action taken by the computer on receiving this messages shall be dependent on the

computer. The intent is that the computer's ACCESS.bus controller physically interrupt
the computer.

ACCESS.bus Base Protocol Specification V2.2

Table 2.3: Application Hardware Signals

INumber Name Purpose .
1 Reset Attempt soft reset of host computer. If no response
' within pre-set time limit, activate hardware reset of
host computer
2 Hait Primarily a debugging tool; could cause exit to a
ROM debugger
3 _ Attention Gain the attention of the computer

This command is optional for both the host computer and for the devices.
2.10.5.2 Application Test

An Application Test command shall instruct the addressed device to reply with the results
of a self-test specific to the device.

Format:

dddddddo

sssssssO

10000001 (P=1, length=1)
I

10110001 (B1h, Application Test op-code)
| .
ccoeoece

This command shall be used by the Application driver to test the Application Part of the
device. When the command is issued, the device has already been configured so the basic
ACCESS.bus functions are assumed to be working.

Unlike power up testing, the device must respond promptly and may not continue testing
until the test succeeds; the device may not ignore other bus commands while testing; and
the testing shall not alter the application state. If no application specific testing is
required, it is recommended that the device report the previous test results gathered during
power up testing.

If useful in a particular application, the device may return a new test report each time the
Application Test command is received. The device's Application driver may then issue
Application Test commands until the device signals success.

2.10.5.3 Application Test Reply

An Application Test Reply shall reply to an Application Test méssage with a self-test
report specific to the device.

Format:

ddddddd0

$ssssssO

ILLLLLLL (P=1, length=2-32)
| .

10100001 (A1lh, Application Test Reply op-code)
status (O=passed, non-zero=failure)

body (0-30 bytes of additional test information)
| .
ceeeeece

" ACCESS.bus Base Protocol Specification V2.2 - o _ 2-19

2.11

2-20

The only restriction on the message is that the first bytc of the body (status) be zero if the
test succeeded, and non-zero otherwise.

The computer may respond to a failed test report by either ignoring the message (and the
device), or printing the body of the message, perhaps in both hexadecimal and ASCII (if
‘printable).

2.10.5.4 Application Status Message

Devices may report changes in their status, or various error conditions to the host
computer by sending an Application Status Message. This message is intended to be used
for reporting information to device drivers about changes in the application specific
portion of the device. It includes both pre-defined and private fields. The private fields are
ignored by generic device drivers but may be used to encode vendor status information for
use by vendor supplied device drivers.

Application Status Message - A2h 00h (optional)

- Format:
dddddddo
sssssssO
10000101 (85h, P=1, length=5)
10100010 (A2h, Application Status Message))
00000000 (00h, Second byte of Application Status Message Command)
© S55SSSSS (Status Code)
YYYYYYYY (Device specific data, set to 0 if unused)
YYYYYYYY
ccoceeee

Device to Host 50 XX 85 A200SSYY YY CS

Where: A2h 00h is the Application Status Message Command.
SS is the status code

00 - Device ready

01 - Device not ready

02 - Device capabilities have changed

03 - Device has lost its internal state, most likely due to a failed state restore
operation after a low power suspend or power off mode.

04 - Device has lost applications data, most likely due to an internal data
buffer overrun.

05 - Reserved for vendor use, suggested for status changes.

06 - Reserved for vendor use, suggested for errors.

YY YY are two bytes of vendor specific data. Devices that do not use these fields should
return 00 00 in them.

Device Power Management (Optional)

The Device Power Management command shall be sent by the computer to a device to request that
the device change its operating mode in order to control power usage by the device, or to notify a
device of the computer's intentions to turn off the ACCESS.bus power supply. All of the Device
Power Management (DPM) commands are advisory, and a device may continue to operate in the
mode it is in as necessary to complete its tasks. As soon as possible, the device should attempt to
switch to the operating mode requested by the computer. Devices may also make internal decisions
with respect to which operating mode they should be in to control power usage, and they may
transition to a low power level without specific direction from the -host computer.

_ ACCESS.bus Base Protocol Specification V2.2

Devices which support power management should pOWer up in the lowest power operating mode
possible.

There are five operating modes supported by the DPM commands, each requiring successively less
power:

1. Run. In this mode the device is operating at full power, and is either in operation or
ready for immediate use. .

2. Standby. In standby mode the device has reduced its power consumption as much as is
possible while still being able to respond to applications data reports or operations
without undue delay or restart power consumption. For example, a laser printer would
shut off its toner fusing heater and imaging laser, but would probably leave its image
rasterizing processor and memory on.

3. Suspend. In suspend mode the device should reduce its power consumption to the lowest
possible level. Only Interface Part Control/Status messages will be sent to the device
by the computer while suspend mode is in effect. The device may send applications
messages to the computer, allowing the possible use of keyboard, mouse, or other
peripheral events to end a system wide suspend mode, however the computer may elect
to ignore applications messages received while it is in suspend mode.

4. Shutdown. Shutdown mode is equivalent to suspend mode except that the device may
not initiate a transition to a state which requires higher ACCESS.bus power on its
own. (A device in suspend mode could do so in response to some external event.)
Shutdown mode will be used by the host for ACCESS.bus power supply load
shedding. In shutdown mode the device should reduce its power consumption to the
lowest possible level. Only Interface Part Control/Status messages will be sent to the
device by the computer while shutdown mode is in effect. A device which has received a
shutdown mode command shall remain in shutdown mode until it receives another
DPM command.

5. Power off. In each of the three operating modes the device's bus interface is still active,
and the device can respond to commands from the computer, In this mode the bus
power supply is turned off, causing all bus powered devices to be turned off. During an
orderly shutdown the computer will issue the Power Off DPM command to all DPM
capable devices and then wait for 100 ms after the last ACCESS.bus packet before
shutting off the bus power supply. Devices which require continued power to complete
a task in process can request that the computer leave the power on by using a Resource
Request for power during this interval. The computer will attempt to comply with the
request, but may be unable to.

Devices entering Suspend, Shutdown or Power Off mode must, if at all possible, save their
internal state information so that they can resume operation transparently after they return to
Standby or Run mode. There are many ways to do this including local non volatile storage, a
device power supply separate from the ACCESS.bus, an ACCESS.bus power supply separate
from the host computer, and temporary storage of device state information by the host computer.
This last approach is supported by Resource Requests to read and write device data, and additional
DPM command, Restart, which is used to notify a device that has been powered off that saved state
information is available for it.

Devices that have saved their internal state in response to DPM Suspend or Shutdown command
using a Resource Write Data Request should restore their state when they receive a DPM Restate
command By using a Resource Read Data Request.

Devices that save their internal state in response to a DPM Power Off command using a Resource
Write Data Request should restore their state when they receive a DPM Restart command by using

ACCESS.bus Base Protocol Specification V2.2 : : . : 2-21

2-22

a Resource Read Data Request. It is poss1blc that the device's attempt to restore its state will fail.

In this case the device should retain its addrcssmg and other bus interface related state and restore
the rest of its state to the condition it was in prior to attempting to restore its state. The device
should then notify its driver using the Application Status Message.

The host computer can query a device for its operating mode and power consumption by sending
the DPM Query power mode command. The device will respond with a Device Power Usage Reply
which includes the operating mode the device is in and optionally the devices actual or estimated
power consumption. .

2.11.1

2.11.2

2.11.3

Device Power Management Command
Host to Device XX 50 82 F6 {0(_),01,02,03,04.05,06] Cs

‘Where: F6 - Device Power Management Command
00 - Run Mode '
01 - Standby mode
02 - Suspend mode
03 - Shutdown mode
05 - Restart
04 - Power off advisory
06 - Query power mode

Devices which only implement a subset of the Device Power Management Command
should simply ignore unimplemented commands, or treat unsupported modes as

- equivalent to some supported mode. Thus, a kcyboard might treat Run mode and Standby

mode commands identically.
Device Power Usage Reply
Device to Host 50 XX 87 E6 00 OM BH BLLHLL CS

Where: OM is the operating mode
00 - Run mode
01 - Standby mode
02 - Suspend mode
03 - Shutdown mode
04 - ready for Power off

BHBL is a 16 bit integer representing the ACCESS.bus power usage in .01 watt units, A
value of FFFFh indicates unknown power usage.

LHLL is a 16 bit integer representing the line power usage in .01 watt units. A value of
FFFFh indicates unknown power usage.

Power Management Capabilities String

Devices which support the Device Power Management command shall include as a part of
their capabilities string a tag pwr, and if possible the power capabilities string specified
below. The DPM capabilities must follow immediately after the prot(), type(), and
model() declaration .

prot)
typeQ)
model()

pwr({run() stdby() susp() shut() ssave() psave() })

where the { } brackets indicate optional items, and:

ACCESS.bus Base Protocol Specification V2.2

pwr() indicates a device that supports DPM commands but whose support for specific
modes is undisclosed and whose power consumption in different modes in unknown.

run, stdby indicate that the device supports the named mod, and if susp and numeric
values are included what the power usage is for that mode. ‘

ssave(#) indicates that the device can save its state across a suspend and if it requires use
of host computer resources approximately how many bytes of data. Zero as an amount
indicates that the actual number of bytes required is unknown. No number indicates that
the device does not require the use of host resources.

psave(#) indicates that the device can save its state across a power off mode and if it
requires use of host computer resources approximately how many bytes of data. Zero as
an amount indicates that the actual number of bytes required is unknown. No number
indicates that the device does not require the use of host resources.

The format of the power usage specifier is:

run((B}# {L#})
where power usage from the ACCESS.bus power supply is specified by either a number
with no prefix, or the prefix B followed by a number, and power usage from another
source is specified by the prefix L followed by a number. In each case the number
represents the approximate power consumption of the device in .01 watt units.
For example, the power management capabilities string for a laser printer which uses line
power for its toner fusing heaters and rasterizer, and the ACCESS.bus power supply only
for its ACCESS.bus interface might be:

pwr(run(B10 L 10000) stdby(B10 L 10000) susp(B10 L.2) ssave() psave())
This example device doesn't require any storage from the host computer to save its state
since it keeps a small amount of memory active using line power even if the
ACCESS.bus power is turned off.

For a keyboard that uses state save to save the state of its indicator lights, the power
management capabilities string might be:

pwr(run(15) susp(3) ssave() psave(l))
In this example the keyboard only requires storage from the host computer when it will
be totally powered off. Otherwise its local Microcontroller can save the state of the
indicator lights even though they are turned off during suspend mode.
Devices do not need to fully disclose their power management capabilities in the pwr
string in order to receive DPM commands from the host computer, however devices
should disclose their state saving ability whenever possible.

2.11.4 Power Management Resource Request command

Resource Write Data Request - resource code 04
Device to Host 50 XX 100xxxxx ES 04 dataCS

where the third byte contains a five bit count of the number of bytes to write, and the data
bytes are private binary data.

ACCESS.bus Base Protocol Specification V2.2 g 7 2.23

2-24

2.11.5

2.11.6

The host computer stores the data with a tag identifying t.he.dewce which saved the data
and the sequence of writing the data. Resource Read Data Requests are fulfilled in first in
first out order.

Resource Read Data Request - resource code 05

Device to Host 50 XX 82 E5 05 CS

Resource Power Request - fesourcc code 06

Device to Host 50 XX 82 E5 06 CS

This request is made by devices that have received a DPM Power Off advisory and need
additional time to complete the task they are doing, or otherwise want to continue
operation. There is no guarantee that the host computer will grant this request to continue

providing ACCESS.bus power. If the host computer cannot grant the request it will
respond with a Response Grant with the status code set to failed.

_Power Management Resource Grant command

The response provided by the Resource Grant command is unchanged for the Resource
Write Data Request, and the status byte reflects the action taken by the host. Note that a
host computer which has run out of storage it can use for this purpose would return a
status of either failed - try again later or failed.

The response provided by the Resource Grant command consists of the data from the
oldest successful Resource Data Write Request for the requesting device. (Note that the
host computer must perform the necessary mapping between bus addresses and device
identification if the assignment of bus address to devices has changed since the Resource
Data Write Request.)

Host to Device XX 50 100xxxxx F4 data CS

Where the third byte contains a five bit count of the number of bytes read, and the data
bytes are private binary data.

In the event that there are no data records available to the device, the status will be set to
failed. Data records which are not read before the second power shutdown after the data
record was written are discarded by the host. .

Devices using the Resource Read Data Request to restore their internal state should
include information in the data they save which will allow them to verify the correctness

and completeness of the data they receive. Devices which attempt to reset their state and

are unsuccessful should revert to the state they were in prior to attempting to reset their
state and send an Application Status Message to the computer from the assigned address.

The response provided by the Resource Grant command is unchanged for the Resource
Power Request, and the status byte reflects the action taken by the host. A host computer
which cannot or will not continue to provide ACCESS.bus power will return a status of
failed.

Power Management Status Message

The Application status message is used by devices to report a failure of a state restore
operation after a power down/restore sequence.

It is recommended that devices which rely on the Resource Write Data and Read Data
request to store internal state information use this message to report failures which occur

ACCESS.bus Base Protocol Specification V2.2

during state restorations. Device drivers which receive this message may be able to reset
the device, restore its state and continue with operations.

2.12. Device Bandwidth Managemeht (Optional)
2.12.1 Bandwidth Management Capabilities String

To put in place the foundation for software Bandwidth Management mechanism - BWM,
each ACCESS.bus device will report to the host, as part of its capabilities string, its
requirements for bus bandwidth. -

Devices which support the Bandwidth Management mechanism - BWM command shall
include as a part of their capabilities string a tag bwm, and if possible the bandwidth
capabilities string specified below. The BWM capabilities has to be immediately after the
DPM (Device Power Management) capabilities

protQ
typeQ
model()

pwr()
bwm({mlength(maximum nominal minimum) mwtmaximum nominal minimum)})
bwm is the keyword for bandwidth management group of parameters.
mlength - stands for message length. The maximum, nominal, and minimum attributes
are the maximum, nominal, and minimum of the number of bytes in the device
application message. The message length includes all the message bytes (destination and
source addresses, message length, data, and checksum) in hexadecimal.
mwt - stands for "message wait time". The mwt is the minimum waiting time between
the end of the current message, and the beginning of the next message. This time is
calculated as the following: ’ :
mwt = decimal value of (mwtH mwiL} x 100sec [seconds]

The maximum, nominal, and minimum attributes are the maximum, nominal, and
minimum values of the device wait time.

Examples: '

A mouse reports

bwm({mlength(OA 0A 0A) mwt00122 0064 005A)})

A keyboard reports

bwm({mlength(OE 05 05) mwi2710 1388 07D0)))

When a device is connected to the bus, it will set itself to the nominal bandwidth mode.
The Bandwidth Management mechanism - BWM will get the bandwidth attributes of all
the devices, and will instruct each one of the devices in which mode to stay. This decision
can also be manually controlled by the user via an ACCESS.bus control panel. The

BWM will alert the user if there are too many devices connected to the bus and will advise
him to disconnect or disable a device / devices (Enable Application Reports).

ACCESS.bus Base Protocol Specification V2.2 . : 225

2-26

2.12.2

2.12.3

2.12.4

Device Bandwidth Management ‘Command

This command is used by the ho§t to send the device its operating bandwidth parameters.
Host to Device _ B :

Format:
XX 50 84 F8 YY mlength mwtH mwtL CS

Where: F8 - Device Bandwidth Management command
YY = 00 instruction to the device to switch to the specified bandwidth mode.
YY = 01 request to the device to report its current bandwidth mode
(Device Bandwidth Usage Reply)
mlength - Maximum message length - hexadecimal
mwtH, mwtL - Two bytes of the Maximum messages rate (messages per second)
- hexadecimal

Device Bandwidth Usage Reply

This command is used by the device to tell the host the device-operating bandwidth

parameters. This command is sent to the host to acknowledge the acceptance of Device
Bandwidth Management command (Y'Y=00), or as a reply to host bandwidth inquiry

(YY=01)

Device to Host
Format:

50 XX 84 E§ mlength mwtH mwiL CS

Where: ES8 - Device Bandwidth Usage Reply
mlength - Maximum message length - hexadecimal
mwtH mwiL - Two bytes of the Maximum messages rate (messages per second)
- hexadecimal '

Bandwidth Resource Request command
When a device finds that it needs more bus bandwidth (the device loses too many
messages), the device will send a BWM resource request message to request more bus

time.

Device to host:

Format;

ddddddd0

sssssssO

100xxxxx (P=1, length=n)

! _

11100101 (E5h, Resource Request op-code)

00010000 (10h BWM resource designator)
~ mlength {message length)

mwtH (message rate high)

mwitL (message rate low)

|

ceeeoeee

ACCESS.bus Base Protocol Specification V2.2

2.12.5 Bandwidth Resource Grant command

This command is used by the host as a résponse to the device bandwidth request

(Bandwidth Resource Request)

Host to device

Format:

ddddddd0 -

sssssssO v

100xxxxx - (P=1, length=n)

i

11110100 (F4h, Resource Grant op-code)

00010000 " (10h BWM resource designator)

status (O=success, 1=unsupported,
2=failed- try again later, 4=failed)

mlength (message length granted)

mwtH (message rate granted high)

mwitL (message rate granted low)

cceeeece

ACCESS.bus Base Protocol Specification V22 . | | 227

Appendix A -
Summary of Standard ACCESS. bus Interface Op-codes

Op-code | Function
ghex! :
FO Reset '
F1 Identification Request
F2 Assign Address
F3 Capabilities Request
F4 Resource Grant (optional)
F5 Enable Application Report
F6 "Power Management (optional)
F7 Presence Check
F8 Device Bandwidth Management (optxonal)
EO Attention
El Identification Reply
E2 (Reserved)
E3 Capabilities Reply
E4 (Reserved)
ES Resource Request (optional)
E6 Power Usage Reply (optional)
E7 (Reserved)
ES8 Device Bandwidth Usage Reply (optional)
C0 (reserved for vendor usage)
Cl (reserved for vendor usage)
C2 (reserved for vendor usage)
C3 (reserved for vendor usage)
- C4 (reserved for vendor usage)
C5 (reserved for vendor usage)
C6 (reserved for vendor usage)
C7 (reserved for vendor usage)
C8 (reserved for vendor usage)
Bl Application Test
A0 Application Hardware Signal (optional)
Al Application Test Reply
A2 Application Status Message

ACCESS.bus Base Protocol Specification V2.2

SECTION 3

ACCESS.bus

Device Driver Interface Specification

SECTION 3

ACCESS.bus

Device Driver Interface Specification

February 1994

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety. '

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of 12C components from vendors licenséd by Philips under the Philips 12c patent conveys a

license to use these components in an 12C system, provided that the system conforms to 12Cc
specifications. '

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

3.0
3.1

32

3.3

Basic (eIMINOIOZY .eveeecerereesrsnersssnessnionssssnssssennisssiosssnananesessessessannasias 3.2
3.1.1 DevVICEAMVET ..cccunereerirraemecreieernnsarsecsnsissssasenseossasanesssstessenssses 3-2
3.1.2 Device éapabilitieé ... 32
3.1.3 Driver Cpabilities liSt....ucuersercserereresesessssssesssessnsassessansnsasacacs 32
304 PIOW) cerererernerrresasensessssammssnss messsasassasssssessesssaissansasssassassase 3-2
3,15 LYPE() eerereeeresussirsressessansnsntastssunsnesnisnasaasnusssestesscsnsasesnta et 32
3.1.6 - MOEI(evereereeruncorsrerssessnssnsssnasnsssissssssesasesassnsssasesasssessssssnsans 33
307 DEVICEID werrrseeeemmmmseessssmsnsessssssssssasessesasssssssssnsessssssssssssssases 33
3.1.8 Device Table........ eeeesessesseseenstnnsaresietiserasesnastanttaresttsssaresieases 33
3.19 Device driver inking PrOCESS...c.eereeersennnensssesassssssereanaascssssacsenes 33
3.1.10 Device Table ENITY....ccccrerveerssssanecrssansissssntessmssssnnessassssnsesssssces 33
3.1.11 Device status and Status TEZISIETeersseereensanssaessacssoecsssesssanasnes 34
The ACCESS.DUS VIS QFIVT..crrsimsrreserssrssssssessessonsssssssnsssssssses 34
3.2.1 System CONfIZUTAtiON.....ccoreeeersessrrrsnnsssenessnnsssssssssssssssnssnnessen 34
3.2.2 Driver capabilities LiSt....cceervueeesscrressurrissnnmanniaaniasssnnesscaneee 34
3.2.3 The LinkiNg PIOCESScceessrarrerrssscrarssrssssransssrssssnsnssassssesssnanes 3-5
The Bus manager - Device driver interfacecevveeienninsnticsssssccesnnannenne 3-7
3.3.1 Message FieldS ..ciivimnnnenienccsesiinnnsiiecinininneesassesssnsesnenanecees 3-7
33.1.1 MINOT OP €O «.cverereressinurenssnrensssssnsrossnsnnsasannssoss 3-8
33.1.2 Major op _code ... 3-8
3.3.1.3 Device ID (DevID)..ueirrnerraaerasenssscsreacssnnsaraassas 3-8
33.14 Message Length....ceeeecerneennnseenesieensensnenasanenes 3-8
3.3.15 DAata BYLES ..ceeveeesueirssressnsonannssnsasssnssesarasnnassses 3-8
3.3.2 Driver to Bus Manager Messages.....cocurusscurmmssnsimsarsssesenasensense 3-8
3321 Reset op code-20h 39
3322 Link request 0P €0de = 21h cecuneeeeicieeinicisnunencncnnes 3-9
3.3.23 Link approval/disapproval - op code - 22h..........cce... 30
3324 - Get specific device table - op code - L) | T 3-10
3325 Getdevice IDString Op €0 - 24N euennereerssccneennnacs 3.10
3.3.2.6 Get device type op code - 25h....meereiericiiciennnnens 3-10
3327 Get device status - opcode - 26h c.eeeereciiieiiiiiiiiannes 3-11
3328 Device enable/disable - op code - 27h.......cccoivnennneesd 3-11
3.3.29 Message to device - op code - 28h 3-11
3.3.2.10 Driver disconnect op code - 29h ; 3-12
3.3.3 Bus manager (0 Driver MesSages......ceevuvresssannisscenaissssnaniasnees 3-12

34

35

3.33.1 Link reply op code - 40h .3-12

3332 Specific device table - op code - 41h.......cccerneneneee. 3-13
3.333 Device ID opcode - 42h....ccciiiiiiiirciinenininaereneacens 3-14
3334 Device type OP CO0E - 43N.ummnremmmeeerscreeerseresrennees 3.14
3.3.3.5 Device status 0p code - 44h........cverrurreenereeneecsesnes 3-15
3336 Message from device op code - 45h.....ccoeeevmnnannnnnii 3-15.
3.3.3.7 Device disconnect - op code - 46h......ccevveernmenenennesss 3-16
The device driver to bus manager interface mechanism (IBM PC
SPECILIC). . eeiiisiircrerrerssrerenssssranennacsatsnssssanansessonasnnesenss creessneessnssnsssasen 3-16
3.4.1 GENETAL....ccceeueceeeeneemersscorcessosenssnsssssossssssssssasansaanasnensssrasssssss 3-16
3.4.2 Driver to bus manager.........cceoeeevervecnnns temssetessrrssssnsrassenseesanonns 3-16
3.4.3 Bus manager to driver - replies.........cceccivrrecrennns cresereresaneseiessisan 3-17
3.4.4 Busmanager to driver - device and disconnect messages........oecvee. 3-17
MESSAZE SUMIMATY .cccrervereesrereersnessosssrsansasssnnasssasssssssssssassasssssssssssnssen 3-19
3.5.1 Driver t0 bus mManager MESSAZES....ercsresesrernsrrsisessssesassesnsansens 3-19

3.5.2 Bus manager to driver MeSSAZesccesererererierresarnrnmsosassisisisesnee 3-19

3.0 Introduction

One of the goals of the ACCESS.bus technology is to allow the creation of generic device drivers
capable of handling many different devices that belong to the same functional family, while
simultaneously allowing a driver to be written for a specific device which takes advantage of its
unique features without complex, hardware interface specific code. In addition, it is desirable to
isolate the device drivers from the details of managing the ACCESS .bus itself. In order to do this,
ACCESS.bus systems provide a bus manager. The bus manager controls the ACCESS.bus host
interface hardware, 1mp1cmems the base protocol, including device address assignment and the
identification of arriving or departing bus devices; and routes messages to and from devices and
their corresponding device drivers.

The purpose of this document is to define the interface between device drivers and the
ACCESS.bus bus manager. At this time, the internal structure of bus managers is not specified.
Different hardware architectures may require different bus manager architectures.

The following schema illustrates the functional responsibility sharing between the bus manager
and the device drivers:

User's Application User's Application User's Application éystem Software
1 2 Y
T i i i

+ + il il

Device Driver Device Driver Device Driver Utility Application
) 1 2 X

Bus Manager Interface || Bus Manager Interface || Bus Manager Interface Bus Manager Interface

T
-

Device Driver Interface

Bus Manager
ACCESS.bus Interface

ACCESS.bus

Device Device | Device | Device
1 |2 3 K

Figure 3.1: Bus Manager/Device Driver Relationship

The bus manager and the device drivers communicate through shared memory buffers. Both the bus
manager and the device drivers place formatted messages in memory buffers. For Intel type PCs
operating in real mode, device drivers notify the bus manager of a new message via a software
interrupt. The bus manager replies to most messages from the device drivers by writing the
response into the same message buffer and then returning control to the driver. The bus manager
notifies the device drivers of a new message via a far call to the device driver.

ACCESS.bus Device Driver Interface V2.2 3-1

3.1

The bus manager returns a status code in the AX reglster for each message it receives from the
device driver. :

In order to simplify the description of these transactions, we use the phrase "send a message” to
describe all of the processes used to transfer data between the device drivers and the bus manager.

(See section 3.4 for a detailed description of each of the message passing interfaces for the real
mode Intel PC environment).

This approach of using messages in memory buffers is extensible to other processor execution
modes, and also to other processor types and operating systems. Of course, the details of how a
memory buffer reference is passed, and how control is passed when a new message is present, must
change for each environment.
Basic terminology
This section defines the common terminology to be used in this specification.
3.1.1 Device driver
A functional piece of software that supplies the interface between the physical device,
(through the bus manager) and an application or operating system program. The device
driver receives the operational data from the device, and transfers it to the application or
operating system in the appropriate format.
3.1.2 Device capabilities
A set of attributes that describe the functional characteristics of an ACCESS.bus
peripheral device. These attributes are encoded into a capabilities string, which consists of
a defined set of tokens and values.
3.1.3 Driver capabilities list

A hierarchical list of device prot(), type(), and model() strings which identifies the set of
devices that are supported by the 'specific driver.

3.1.4 prot()

The highest level definition of a device's family category. Each prot() is exclusive, and
each device belongs to at most one prot ().

Example:
prot(locator), defines the family of all devices that are used to obtain pointing input from
a user. This category includes all types of mice, digitizing tablets, trackballs, light pens
and more.

The value of prot is an ASCII character string. For the bus manager, only the first 8
characters are significant.

3.15 type()
The second level definition of a device's family category. Any device that does not belong
to a given type category and belongs to the same prot must be in a different type
category.

Example:

ACCESS.bus Device Driver Interface V2.2

type(mouse), defines a subset of pointing devices. A digitizing tablet belongs to the same
prot category, but is not included in the type(mouse) category.

The value of type is an ASCII character string. For the bus manager, only the first 8
characters are significant. ' o

3.1.6 model()

The third and lowest level definition of a device's family category. Any device that does
not fall in a given model category, and which belongs to the same prot and type, must be
in a different model category.

Example:

model(3D-15L), defines a subset of mice that can handle position and motion in a three-
dimensional space.

The value of model is an ASCII character string. For the bus manager, only the first 8
characters are significant.

3.1.7 Device ID

A unique, internal ID number that is assigned to a device by the bus manager. The Device
ID is not necessarily equal to the ACCESS.bus address assigned to the same-device. The
bus manager translates the ID number into the ACCESS.bus-assigned address within
outgoing messages, and translates the ACCESS .bus assigned address into the device ID
for incoming messages.

3.1.8 Device Table

The Device Table is an ACCESS.bus bus manager data structure that is available to
device drivers. The following information is included in the device table for each device
present on the bus:

The device ID

The device's complete Identification string

The first eight bytes of the device's ‘prot', 'type’, and 'model’ capabilities strings
The device status

3.19 Device driver linking process

The part of the device driver that communicates with the bus manager to establish a
logical link with a physical device or devices on the ACCESS .bus. Since device drivers
may support multiple physical devices, and the devices may or may not be present when
the driver loads, the bus manager provides a mechanism for a device driver to specify the
types of devices it wants to be connected to, and also to register itself for future
connection to any devices that meet the driver's connection criteria.”

3.1.10 Device Table entry
One entry in the Device table (of a specific device) that specifies the device assigned

address, the device identification string, the device capability values of prot, type and
model, and the value of the device status.

ACCESS .bus Device Driver Interface V2.2 3.3

3.2

34

3.1.11

Device status and status register

One byte of data that indicates the device current status. The bus manager keeps this data
as part of the bus manager's Device Table.

The device status byte has the following format:

D7 D6| D5 | D4 D3 D2 D1 DO
not linked reserved bad non-active | virtual disable 0
linked good active | physical | enable | 1

DO indicates whether the device is enabled or disabled. The bus manager will not transfer
messages to the driver from a device that is disabled.

A virtual device is a device that physically does not exist, but has an entry in the bus
manager Device Table and is being simulated by the bus manager or other software.
Virtual devices are useful for software testing, and to allow the simulation of

. ACCESS.bus devices using non-ACCESS.bus hardware.

A non-active device is a device that has not sent any messages to the host since the last
time the bus manager checked its presence.

A bad device is a device that the host was able to assign an address to, but then could not
get its prot(), type(), and model() capabilities values, for some reason.

D7 indicates whether the device is connected (linked) to a device driver or is still free (not
linked).

The ACCESS.bus device driver

3.2.1

3.2.2

System configuration

The bus manager can simultaneously support any number of drivers of any category. The
set of device drivers installed, and the method through which the set of drivers is defined
and loaded, is dependent on the operating systems environment.

Driver capabilities list

Each device driver will normally maintain an internal list of the types of devices it
supports. Generic drivers will support any model of a given type or types of devices.
More specific drivers may support only one model or device. Normally, the generic
drivers and the device specific drivers will coexist.

For example, a user may have both a mouse and a trackball. The generic ACCESS.bus
locator driver might be used to support the mouse while a device-specific trackball driver
with enhanced features is used to support the trackball. Both drivers must coexist and
function appropriately.

In general, device drivers should provide a means to display to the user the types of
devices that the driver can support as well as the devices to which the driver has been
connected. In some cases, it may be desirable for a device driver to provide the user with
control over which devices it will connect to, thereby allowing the user to dynamically
control which peripherals are being controlled by a given driver.

Other strategies may be used in specific operating system environments to define the
binding of devices to drivers.

ACCESS.bus Device Driver Interface V2.2

The special prot value "Abmon" is used to indicate to the bus manager that the device
driver is a debugger or other form of bus monitor that should be connected on 2 non
exclusive basis to all devices. When an Abmon driver is active copies of each device
message are sent to the driver.

3.2.3 The Linking process

The linking process is the most complex aspect of the device driver's interface with the
bus manager. Device drivers define which devices they want to be linked to by specifying
the prot, type and model of the devices they want. The bus manager then replies with a
sequence of matching devices which the driver can choose to link to or ignore. Finally the
driver can choose to receive notification of new devices that meet its defined categories
from the bus manager when the new devices are connected to the bus.

The sequence of the linking process is as follows:

1. The device driver sends a Link request message to the bus manager in which it declares
the prot, type, and model categories of the peripheral devices it would like t0 be
connected to.

The Link request message contains three 9 byte fields, one each for prot, type and
model. Only the first eight bytes of each field can be used for a string, at least one null
termination byte must be present for each string.

The asterisk character ("*" , 02A hex) is used as a wild card to indicate any device of
that category.

Examples (see section 3.3.1 for message structure.):
To specify every pointing device of type mouse:

prot(locator), type(mouse), model(*)

db 00 ; Link request minor op code
db 21h ; Link request major op code
db 00 ; DeviceID=0

db 1Bh ; Message length = 27 bytes
db "locator” 00,00

db "mouse”,00,00,00,00

db "*" 00,00,00,00,00,00,00,00

db 29 dup(0) ; padding to a 60 byte buffer

To specify any available device:

prot(*), type(*), model(*)

db 00 ; Link request minor op code
db 21h . *; Link request major op code
db 00 ; DeviceID=0

db 1Bh ; Message length = 27 bytes
db "*" 00,00,00,00,00,00,00,00

db "*" 00,00,00,00,00,00,00,00

db "** 00,00,00,00,00,00,00,00

db 29 dup(0) ; padding to a 60 byte buffer

{On a real mode Intel PC platform; to send the message the device driver sets the DS
(segment), and DX (offset) registers to point to the message and then executes a
software interrupt 60 hex. The bus manager uses this same buffer for the Link reply.}

ACCESS .bus Device Driver Interface V2.2 ' _ 3-5

2. The bus manager scans the Device Table for any bus devices that match the
categories specified by the device driver.

3. The bus manager replies by sending a Link reply message to the device driver in the
same memory buffer. If there is an available bus device that matches the
specifications, the reply message will contain the devxce s complete ID string and its
prot, type and model, and the device status.

4. The device driver responds with a Link approval/disapproval message, thereby
choosing whether or not to be linked to the device. The linkage is exclusive, with
the exception of special bus monitoring drivers which can receive a copy of each
message sent or received by a bus device. (These bus monitoring drivers are
typically used for diagnostic test or debugging purposes.). Once a device driver
approves a link with a device, the device is no longer available to any other device
driver.

If the driver chooses to approve the link, it provides the bus manager with a
callback address (a 4 byte far call address seg:offset form) which the bus manager
will use to send device events to the driver. '

5. Repeat steps 1 to 4 for additional devices until the bus manager indicates that it has
reached the end of the list of devices meeting the driver's category specification

. 6. When the requested device does not exist in the Device Table, the bus manager sends
a Link reply with minor op code = FFh (no matching device). If the driver approves
the Link reply, the bus manager saves the request in a special pending requests list.

7. Once the link is in place, the driver can send messages to the device itself or to the
bus manager.

The bus manager sends all the application reports of the linked devices to the device
driver.

The driver can manage each device it is linked to separately (by their Device IDs).
It is up to the driver or its application to decide how to make use of multiple
devices.

8. When a new device is connected to the ACCESS.bus (hot plugged in), the bus
manager sends the Device Table entry (op-code 41h) to each driver with a matching
pending request. The first driver that responds with a Link approval to the message
will be connected to the new device. '

Note: The manager sends the Device Table Entry message with the same way as it

sends a new application report message (push a pointer to the link reply message buffer
onto the stack). .

3-6 o ~ ACCESS.bus Device Driver Interface V2.2

3.3

A typical linking protocol sequence is:

Example 1:

Driver

Bus Manéger

Link request

Link reply (DevID = 1)

Link approval (DeviD = 1)

Link request

Link reply (DevID =2) .

Tink approval (DeviD = 2)

Link request

Link reply minor op code = FFh
(no matching device)

Link approval (pending request)

(for more details see the Link request, and Link reply message descriptions)

Example 2:

The other alternative of linking process is a connection of a new device that was requested
previously and was on a pending request list.

Driver

Bus Manager

Link request

Link reply (DevID = 1)

Link approval (DevID = 1)

Link request

Link reply minor op code = FFh
(no matching device)

Link approval (pending request)

New device with matching capabilities is hot plugged in

New device table entry to driver
(op code 41h)

Link approval (new device)

The Bus manager - Device driver interface

The following protocol is used for sending messages betweeﬁ the bus manager and the device driver
on Intel style PCs operating in real mode.

The purpose of this protocol is to open a link from the device driver to the ACCESS.bus
peripheral device through the bus manager. The following section lists the messages and describes
each message format.

3.3.1

Message Fields

Each message starts with four header bytes, a minor op code, a major op code, the device
ID and the message length . The messages are passed between the device driver and the
bus manager in a memory buffer. Since the same buffer is used by the bus manager to
reply to most of the device driver messages, the device driver must allocate a buffer large
enough to hold the expected response. For simplicity, it is a good idea for device drivers
to allocate a single message buffer larger than is required by any message/response pair

ACCESS.bus Device Driver Interfice V2.2

37

and use the buffer for all communication w1th the bus manager A buffer of 132 bytes is
sufficient to hold the largest possible message.

All message buffers should be aligned on a word boundary, and messages with odd
numbers of data bytes must pad their buffer to an even word boundary to allow the bus
manager to read the message by words.

The minor op code is located in the first byte of the message, and the major op code is
located in the second byte. The third byte of the message contains the device ID, and the
fourth byte of the message contains the length of the message in bytes The message
length is the number of data bytes, excluding the four header bytes, in the message. Note
that the buffer length is frequently longer than the message length!

The message header structure is as follows:

Byte Number Field
1 Minor op-code
2 Major op-code
3 Device ID
4 Message Length

The remainder of the message consists of data bytes.
To avoid byte ordering conflicts, the device and the device driver mutually agree on the
data byte order. For example if a device is sending words in Motorola format, the driver

is responsible for converting it to Intel format. (The Manager transfers the data in the
same order as it is received from the bus).

3.3.1.1 Minor op code

The first byte of the message is the minor op code. Usually, this field gives more details
about the major op code.

3.3.1.2 Major op code

The second byte of the message is the major op code. Usually, this field defines a
specific control message or type of data to be transferred.

3.3.1.3 Device ID (DevID)

The third byte of the header defines the peripheral device associated with the message.

3.3.1.4 Message Length

The fourth byte of the header indicates the number of data/control bytes to be transmitted
within this message. (Length does not include the four message header bytes).

3.3.1.5 Data Bytes

The body of the message is contained here. Note that messages must start on word
boundaries and be in buffers which contain an even number of bytes to allow the bus
manager to access the message by word reads. Extra storage after the end of the data bytes
is ignored.

3.3.2 Driver to Bus Manager Messages

ACCESS.bus Device Driver Interface V2.2

3.3.2.1 Reset op code - 20h

Minor: 00h
Major: 20h
DeviD: 00h
MsgLen: ~ 00h

Notes:.

This is a special command message which resets the ACCESS.bus host interface
hardware, and as a consequence, all of the devices on the ACCESS.bus. This command
should never be issued by normal device drivers! '

3.3.2.2 Link request op code - 21h

Minor: 00h

Major: 21h

DevID: 00h

Msglen: 1Bh (27d) B
) Data:

9 bytes for the prot value (up to 8 characters + 00h)

9 bytes for the type value (up to 8 characters + 00h)

9 bytes for the model value (up to 8 characters +00h)
All the three category levels have to be defined. If the link request is not for a specific
device, the category value for model and possibly type or prot should be set to the asterisk
character which acts as a wild card value. The asterisk character ("*", 2A hex) has to be
placed in the first byte of the category value. The other 7 bytes will be 00h .

Example 1:

prot(locator)

1 fojc alt]o I
6C{6F| 63| 61174 6F} 72]100] 00

type(*)

2A100]00]00]00]00]00}00] 00

model(*)

2A]100]00]00§00}00]100}00] 00

ACCESS.bus Device Driver Interface V2.2 . . 39

3-10

Notes: : o
The bus manager will reply with a Link reply message. Programmers should ensure that
the buffer they provide is large enough to hold the resonse message.

3.3.2.3

3.3.24

Link approval/disapproval - op code - 22h

Minor:

Majof:
DevID:
MsgLen:

Data:

O1h Yes - connect
00h No - don't connect

22h

- Device ID of the bus manager Link reply

04h

Callback address in 4 byte segment:offset format. This address
will be called by the bus manager with messages at interrupt
time.

Get specific device table - op code - 23h

Minor
Major:
DevID:

MsglLen:

Notes:
The bus manager will reply with the device table entry for the specified device if it
exists. Programmers should ensure that the buffer they provide is large enough to hold
the resonse message.

3.3.2.5

00h
23h
device ID

00h

Get device ID string op code - 24h

Minor:
Major:
DevID:
MsglLen:

Notes:
The bus manager will reply with the specific device ID string. Programmers should
ensure that the buffer they provide is large enough to hold the resonse message.

3.3.2.6

Get device type
Minor:
Major:
DevID:
MsgLen:

00h
24h
device ID

00h

op code - 25h
00h

25h

device ID

00h

ACCESS.bus Device Driver Interface V2.2

Notes:

The bus manager will reply with the value of the prot(), type(), and model() strings of the
specified device if it exists. Programmers should ensure that the buffer they provide is
large enough to hold the resonse message.

3.3.2.7 Get device status - op code - 26h
Minor: 00h
Major: 26h
DevID: device ID
MsgLen: 00h
Notes:

- The bus manager will reply with the value of the device status for the specified device if it
exists. Programmers should ensure that the buffer they provide is large enough to hold

3.3.29

ACCESS.bus Device Driver Interface V2.2

the resonse message.
3.3.2.8 Device enable/disable - op code - 27h
) Minor: 00h disable
Olh enable
Major: 27h
DevID: device ID
MsgLen: 00h
Notes:

Upon receiving this message the bus manager will enable or disable messages from the
specific device to the device driver.

Message to device - op code - 28h

This message is used to send a message from the device driver directly to the peripheral
device. The contents of this message can be any valid ACCESS.bus message, or any
vendor or device specific message. Well-behaved drivers should not ordinarily send
Interface Part Control/Status messages to their device because such messages may
interfere with the bus manager's control of the ACCESS .bus devices.

Minor: 00h data message
0lh .control message
Major: 28h
DevID: device ID
Msgl en: Message length
Data: any valid ACCESS.bus or device specific message

Note:

3-11

3-12

The bus manager will send this message to the selected device on the ACCESS.bus in the
correct ACCESS .bus format by adding the ACCESS.bus headers and the checksum byte
and translating the device ID into the actual bus address.

The driver can verify that the message was transmitted successfully by checking the stams
code returned by the bus manager.

3.3.2.10 Driver disconnect op code - 29h

3.33

Before a driver terminates, it must send the above Driver disconnect message to the bus
manager. A driver that terminates without sending this message to the bus manager will
crash the system, since the bus manager will not know that the driver's call entry point
has become invalid.

Minor: ~ 00h
Major: | 26h
DevID: | device ID
MsgLen: 00h

Bus manager to Driver Messages

3.3.3.1 Link reply op code - 40h

As a response to Link request, the bus manager sends the following information for each
device in the device table that matches the link request specification. After sending a
message for a device, the bus manager waits for the driver to respond with a Link
approval or disapproval message for that device. For each of the matching devices, the
Minor op code is set to 00h. When the bus manager has sent Link reply messages for
each bus device that matches the link request filter, it sends one additional Link reply
message with a Minor op code of OFFh to indicate the end of the list of matching bus
devices.

Minor: 00h for a matching device.
FFh for the end of the list of devices matiching the given
set of capabilities
Major: 40h
DevID: Device ID
Msglen: - 38h (56 decimal)

This message sends the following device related data:

. The device ID

. The device complete ID string
. The device linking capabilities:
‘prot’

‘type’

ACCESS.bus Device Driver Interface V2.2

‘'model'
Each one of the above capabilities strings is 8 bytes long followed by a 00h.
When the capability string value is shorter than 8 charactérs it is padded with nulls.
. The device status

The messagé formiat is as defined below:

Byte number Content
1 - (1 byte) Minor op code - 00 or FFh
2 - (1 byte) Major op code -40 h
3 - (1 byte) Device ID.
4 - (1 byte) Message Length 38h (56 decimal)
5 - (1 byte) i protocol_revision
6 - 12 - (7 bytes) module_revision
13 - 20 - (8 bytes) : vendor_name
21 - 28 - (8 bytes) module name
29 - 32 - (4 bytes) device_number
33 - 41 - (9 bytes) Value of "prot’
42 - 50 - (9 bytes) _ Value of 'type’
51 - 59 - (9 bytes) Value of 'model'
N 60 - (1 byte) Value of the Status register

Note:
The bus manager uses the same message buffer that was used by the driver for the Link
request message (specified in DS :DX registers)

3.3.3.2 Specific device table - op code - 41h

This message is a reply to Get specific device table.

Minor: 00h

Major: 41h

DevID: Device ID
MsgLen: 38h (56 decimal)

This message sends the following device related data:

. The device ID

. The complete ID string for the device.

. The device linking portions of the device's capabilities string:
‘prot’
'type’
‘model'

. The device status

ACCESS .bus Device Driver Interface V2.2) 3-13

314

The message format is as defined below:

| B;te number , %) Content I
1 - (1 byte) Minor op code - 00

2 - (1 byte) ' Major op code - 41 h
3-(1byte) : Device ID.
4 - (1 byte) Message Length 38h (56 decimal)
5 - (1 byte) protocol_revision

6 - 12 - (7 bytes)) : module_revision

13 - 20 - (8 bytes) ' vendor_name

21 - 28 - (8 bytes) module_name

29 - 32 - (4 bytes) device number

33 - 41 - (9 bytes) Value of 'prot’

42 - 50 - (9 bytes) Value of 'type’

51 - 59 - (9 bytes) Value of 'model’
60 - (1 byte) Value of the Status register

- Note:
The bus manager uses the same message buffer that was used by the driver for the Get
specific device table message (specified in DS :DX registers)
3.3.3.3 Device ID op code - 42h '

This message is sent as a reply to a Get device ID command

Minor: 00h

Major: 42h

DevID: Device ID
Msglen: 1Ch (28d bytes)

Data: 1 byte protocol_revision

7 bytes module_revision

8 bytes vendor_name

8 bytes module_name.

4 bytes device_number
Note:
The bus manager uses the same message buffer that was used by the driver for the Get
device ID message (specified in DS :DX registers)

3.3.3.4 Device type op code - 43h

This message is the reply to a Get device type command.

Minor: 00h

Major: 43h

DevID: ‘Device ID
MsgLen: 1Bh (27d bytes)
Data: '

‘prot’ value (8 bytes + 00h)
'type’ value (8 bytes + 00h)
‘model’ value (8 bytes + 00h)

ACCESS.bus Device Driver Interface V2.2

Note:

The bus manager uses the same message buffer that was used by the driver for the Get

device type message (specified in DS :DX registers)

3.3.3.5 Device status op code - 44h
This message is sent as the reply to a Get device status message. The status register has
the following format: :
D7 D3 D2 D1 DO
0 not linked bad non-active virtual disable
1 linked good active physical enable
- Minor: value of the status register
Major: 44h
DevID: Device ID
MsgLen: 00h
Note:

The bus manager uses the same message buffer that was used by the driver for the Get
device status message (specified in DS :DX registers)

N

3.3.3.6 Message from device op code - 45h

This function is the primary means of communication between the device and the
corresponding device driver. The bus manager passes the message to the driver as it is
received from the device. Parsing the contents of the message is the device driver's

responsibility.

The message is contained in a memory buffer which is only valid for the duration of the
call to the device driver. The driver should copy any information it wants to access after
the call to its own private storage. Since the call to the device driver will occur at
interrupt time, the device driver writer should be aware of the limitations on resources
available at interrupt time under the operating system he or she is using.

The bus manager's protocol headers replace the first three bytes of the ACCESS.bus
message. (destination address, source address, and protocol flag + length).

The device's bus address is translated into the internal device ID.

The message body is identical to the message on the bus (except for the checksum byte
which is removed by the bus manager).

Minor: 00h - data message
O1h - control message
Major: 45h
DevID: Device ID
Msglen: message length
Data: The ACCESS.bus message body (without the checksum byte).

ACCESS.bus Device Driver Interface V2.2 3-15

34

3-16

3.3.3.7 Device disconnect - op code - 46h

This message is sent to notify a device driver that a device to which it was linked was
disconnected from the bus.

Minor: 00h
Major: 46h
DevID: device ID
MsgLen: 00h -

The device driver to bus manager interface mechanism (IBM PC specific)

3.4.1

3.4.2

General

The device driver and the bus manager communicate by sending messages in shared
memory buffers. All bus manager to device driver messages that are replies to a driver

- message (op codes: 40h, 41h, 42h, 43h, 44h) use the same memory buffer that was used

by the device driver's message. The device driver first allocates 4 memory buffer large
enough to hold the larger of its message or the expected reply and then calls the bus
manager by issuing a software interrupt to int 60 hex with the address of the memory
buffer in DS:DX . The bus manager’s reply will be in the message buffer when control
returns to the device driver as long as the call was successful. The device driver should
check the bus manager status returned in the AX register before reading the data in the
message buffer.

All device application reports (op code 45h) vénd device disconnect messages (op code
46h) are sent to the driver by the bus manager in a message buffer allocated by the bus
manager. Prior to calling the device driver event entry point, the bus manager pushes a far
pointer to the message buffer onto the stack. :

Driver to bus manager

The following describes how a device driver sends a message to the bus manager:

1. Allocate a memory buffer large enough to hold the message and the anticipated
response. Prepare the message in the memory buffer.

2. Set DS:DX to point to the message buffer.
3. Call the bus manager (S/W interrupt - 60h)

4. Check register AX for status:

Status code (AX ‘ . Status
value)
0x0000 ’ OK
0x00EE bus manager is busy - release the CPU and try
again later
0x0101 unknown op code
0x0102 unknown device ID.
0x0103 resend message
0x0104 - outgoing buffer full
0x0105 message length does not match

ACCESS.bus Device Driver Interface V2.2

Example assembler code for the driver's call to the bus i_nanager:

MessageBuffer:
i 00h . ; minor op code
& 21h ; Link Request major op code
@ 00 ; DeviceID=0 ,
@ 1Bh ; Message length = 27 bytes
@& "locator”,00,00 -
& "mouse",00,00,00,00
& - "*".00,00,00,00,00,00,00,00
& 101 dup(0) ; Reserve a 132 byte buffer

CallManager:
mov dx,MessageBuffer ; form pointer to message in ds:dx
int 60h ; Call the bus manager
cmp al,00 ; Test for success '
je Success
Error:
<Error handler>
Success:

mov bx,dx :
mov ax,(bx) ;Read the reply message

; process the reply message

3.4.3 Bus manager to driver - replies
The following describes how the bus manager replies to a message from the device driver:
1. Prepare the message in the same memory buffer provided by the device driver.
2. Load the AX register with status.
3. Return to the device driver
3.4.4 Bus manager to driver - device and disconnect messages
The following describes how the bus manager initiates a message to the device driver:
1. Allocate a memory buffer and then i)repare the message in the buffer
Push a far pointer (segment:offset) to the message buffer onto the stack.

Call the device driver event handler address with a far call.

S

When it has completed processing the message, the device driver returns control to the
bus manager via a far return .

Notes:

The event handler address was defined by the device driver in the Link approval message.
The device driver should return from its processing with a far return as soon as possible.
The event call will most likely occur at interrupt time, so the device driver should only
use system resources that are safe to use at interrupt time. The message buffer provided by
the bus manager is only valid during the call to the device driver; the driver should copy

ACCESS.bus Device Driver Interface V2.2 ' 3-17

3-18

any data it wants to retain from the message buffer to its own local storage prior to

returning to the bus manager.

The device driver must ensure that its event handler address is valid at all times undl it
issues a driver disconnect message to the bus manager.

Example C prototype for the driver's event handler entry point:

void far EventHandler(void far *EventBuffer)

Example assembler code for the driver's event handler entry point:

EventHandler:
push
mov
push
push
mov
mov

pop
pop
pop

bp

bp,sp

€s

dx
es,(bp+8)
dx,(bp+6)

g8 &

; preserve registers

; form pointer to message in es:dx

; process the message

ACCESS.bus Device Driver Interface V2.2

3.5

3.5.1

Message summary

Driver to bus manager messages

Command

3.5.2 Bus manager to driver messages

op code
20h Reset
21h Link request
22h Link Approval/Disapproval
23h Get specific device table
24h Get device ID
25h Get device type
26h Get device status
27h Device enable/disable
28h Message to device
2%h Driver disconnect

op code Command
40h Link reply
41h Specific device table
42h Device ID.
43h Device type
44h Device status
45h Message from device
46h Device disconnect

ACCESS.bus Device Driver Interface V2.2

3-19

SECTION 4

ACCESS.bus

Locator Device 'Prlotocol ‘Specification

SECTION 4

ACCESS.bus

Locator Device Protocol Specification

February 1994

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I12C components from vendors licensed by Philips under the Philips 12C patent conveys a
license to use these components in an 12C system, provided that the system conforms to 1
specifications. - :

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

4.0

TN T OQUCTION. s euereeeereeruerssnsessercesnsasssecssassessessassesssnssssssessssssnsanensssnnasees 4-1

4.1
4.2
43
4.4
4.5

4.0.1 Design ObJECHVESceierurrserrireranssasssseessuresssnnnenanas 4-1
4.02 OVerview Of GEneric LOCAIORvvuuerrsesserssenessssessssnes 4-1
Locator Event ReEPOTLS......ccccvvrveurrrecssssnnnensnesessssonsasaosssssssssssess 4-1
Capabilitieé INfOrmation......oceeeseereesissnsassensnsnnsnsnnosssnessascenesd 4-2
LoCator CONVENLIONS..cccoicrsirscsscesssssmsssssnmssssnnsssrsansasassnassassasasd 4-3
Timing and EXCEPUONS....ccereesseeersesesrassscssosessssssssesaressrsesessanss 45
Locator Messages and Commands..........ccoceeerennesssecsancssessosnasses 4-5
4.5.1 Locator Report (Device Data Stream)eveevreeeensseccennss 4-5
452 Application Set Sampling Interval........cceeervueccsasrannasss 4-5
4.5.3 Application POll......cccveeeeercrersmmsecesecssessnsssnssnnsnansnnand 4-6

454 Locator Self Test RePOIl....ccccccreensurncseecssunssannsssnesasd 4-6

4.0

4.1

Introduction

4.0.1

4.0.2

Design Objectives

The locator device protocol described in this specification defines standard messages for
reporting locator movement and key switch activation as needed for mice, tablets, and
other basic positioning devices. The protocol is designed to accommodate a range of basic
locator devices such as a mouse or tablet. More complex devices can be modeled as a
combination of basic devices or can provide their own device driver, thus minimizing the
burden on the protocol.

Overview of Generic Locator
A generic locator consists of one or more dimensions described by numeric values and,
optionally, a small number of key switches. The standard driver requires the locator device
to identify the type of data it will report from a small list of options and adjusts to handle
this data type. These options are:

Number of dimensions, e.g., 2-D, for a mouse or a tablet

Dimension type: absolute, i.e., referenced to some fixed origin, like a tablet; or
relative, i.e., change since last report, like a mouse

Resolution in divisions per unit, e.g., counts per inch or counts per revolution
Dynamic range of values that can be reported, i.e., the minimum énd maximum values
Number of key switches, from 0 to 15

The assignment of scalar-value dimensions returned from one or more devices to the user

interface functions is left to the application. However, to accommodate most conventions,
the scalar dimensions and the key switches can be labeled in the capabilities string.

Locator Event Reports

Locator reports are generated in response to a poll command, or at each sampling interval in which
a change in position or button state has been detected. The sampling interval defaults to twelve
milliseconds (12ms) (83Hz update), but is setable from the host.

Locator event reports include the current button state and the current position or movement since
the last report. For simplicity, these are coded as a sequence of two byte integers. The first integer
contains the state of up to sixteen (16) locator key switches. The remaining integers represent
locator dimensions. Locator event reports are transmitted using the device data stream message (see
ACCESS.bus Description and Protocol Specification).

Example: A 2D mouse might report:

50h computer address

54h device address

06h data stream, data length 6
0001h button "Bl" is down
0017h X movement is 17 units
FFF4h Y movement is -12 units
XX message checksum

ACCESS.bus Locator Device Protocol Specification V2.2 ' 4-1

4.2

Capabilities Information

The keywords defined in this section have standard meénings within the ACCESS.bus Generic

- Locator Device Protocol.

Keyword

prev()

typeQ

type(mouse)
type(digitizer)
" type(tball)
type(ptrstick)
type(touchscn)
type(dial)
type(swpad)

. buttons()

L

R

M

B1B2B3 B4
Tip

Barrel

P

dimQ

d0Q...dn0

rel

abs

inch
cm

Meaning

The "prev(Q" value are two bytes that indicate the current ACCESS .bus
protocol revision, and the current device specific protocol revision.

- The current prev value for locator is BA- prev(BA) - B is the base

protocol revision and A is the current locator protocol revision.
The “type(Q" entry is intended to identify the device type to
the user in a recognizable form. type() is a user's view of a
device. That is, a joystick, mouse, or whatever. It is also a
second level identifier of the device used by the system
software.
Mouse
Digitizing tablet
Trackball
Force activated joystick (typically embedded in keyboards)
Touchscreen .
Dials, arrays of dials, and other single axis valuators
Switch pads, such as those used for game control, where a set
of switches are used to control position and functions. (as
opposed to keyboard) :
The "buttons()" entry lists and describes the key switches that are
reported to host software. The parenthesis contain a list of tagged labels
giving the bit number in the keyswitch word or name.

" Left mouse button.

Right mouse button.

Middle mouse button.
Numbered locator buttons.
Stylus tip button.

Stylus barrel button.

Sensor in proximity indicator.

The "dim()" entry gives the number of dimensions reported by a
locator device.

The "d0Q", "dIQ", ..., "dn()" entry groups' attributes that apply to a
single dimension. Capability attributes within the parenthesis apply
only to that dimension. Capability attributes outside a "dn(Q" entry
apply to all dimensions reported by the device.

The "rel” attribute identifies dimensions that report relative
coordinates, i.e., change since last report, like a mouse.

The "abs" attribute identifies dimensions that report absolute
coordinates, i.c., referenced to some fixed origin, like a tablet.

The "res()" entry describes the resolution of one or more locator
dimensions. The parenthesis contain an integer number and unit. The
number represents the number of movement increments reported for a
change of one unit.

Counts per inch.
Counts per centimelter.

- . ACCESS.bus Locator Device Protocol Specification V2.2

4.3

rev Counts per revolution.

range() The "range()" entry describes the range of values that can be reported
for one or more dimensions. The parenthesis contain two integer
numbers corresponding to the minimum and maximum values that can

be reported.
dname() . The "dname()" entry specifies a label or name for a dimensions.
X X dimension
Y Y dimension
yA Z dimension
RX Rotation about X axis
RY Rotation about Y axis
RZ Rotation about Z axis
PN Pressure Normal to the sensing surface
PT Pressure Tangent to the sensing surface, typically the squeeze pressure

on a pen barrel. :

Consider the following example locator device capabilities string:

(
prot(locator)
type(mouse)
model(VSXXX)
- buttons(I(L)2(R)3(M)) dim(2) rel res(200 inch) range(-127 127)
d(dname(X))
)dl(dname(Y))

"prot(locator)” tells host software that this device is a generic locator and follows the locator device
protocol.

"type(mouse)” provides a user recognizable description of the type of locator device.
"model(VSXXX)" is a user readable identification of the device model.

"buttons((L)2(R)3(M))" describes the device as having 3 key switches or buttons labeled "L" (left),
"R" (right), and "M" (middle). The corresponding bits in the key swiich word are also identified.

"dim(2)" describes the device as a two dimensional locator.
"rel res(200 inch) range(-127 127)" are characteristics of the device that apply to all of its
dimensions since they are not enclosed within a single dimension tag. In this case, each dimension

reports relative movement with resolution of 200 counts per inch. The reported movements can
range from -127 to +127.

The dimension tag "d0()" indicates characteristics that apply to a single dimension only. The
"dname(X)" tag names dimension "d0" as "X".

Locator Conventions

The following conventions are recommended for devices used to input 2D or 3D spatial
information: '

1. Position coordinates are reported in order: X positive from left-to-right; Y positive from
down-t0-up; Z positive out of the screen (toward the operator viewpoint).

ACCESS.bus Locator Device Protocol Specification V2.2 ' 43

44

2. Rotations are reported in order around the X, Y, and Z axis using a "right hand"
coordinate system. '

3. Key switches are reported as bits in a 16 bit key switch word (I=depressed or on) and

should be labeled in the Capabilities String. The following default assignments are
recommended (Bit 1 = LSB).)

ACCESS.bus Locator Device Protocol Specification V2.2

4.4

4.5

~ Table 4.1: Recommended Default Bit Assignment in Locator Key Switch

Bit-numbered (label - | Description .

1 (L) Left mouse button
2R) Right mouse button
3(MV) Middle mouse button
1(B1) 2(B2) 3(B3) 4(B4) Button 1-4

1 (Tip) ' Stylus tip button
2(Barrel) Stylus barrel button
15(P) Sensor in proximity

4. Dials are reported in order from left to right and top to bottom, with increasing values
corresponding to clockwise rotation. Obviously, not all devices will fit these
conventions. These recommendations are intended to simplify interchanging common
locator devices such as mice, tablets, trackballs, joysticks, touch screens, and dial
boxes.

Timing and Exceptions

If a dimension reporting relative movement overflows within a single reporting interval, the
maximum value should be reported. '

Locator Messages and Commands -

4.5.1

4.5.2

Locator Report (Device Data Stream)

The Locator Report message reports the current locator position or movement, and key
switch state.

Format;

dddddddo

sssssss0

000xxxxx (P=0, length=4-34)
locator button state (16-bit keyswitch word)
| .

one to 16 scalar (each value is a 16-bit
dimension values signed integer)

]

©CCCooce

Application Set Sampling Interval

The Set Sampling Interval command sets the locator sampling interval from 1 to 255
milliseconds (3.92 to 1000 reports/second). A parameter value of zero selects polled
operation, that is no unsolicited reports. Devices may not be able to set their interval to
the exact value requested by the host. Devices should set their interval to the closest
value possible that is less than or equal to the requested interval. As a design guide,
devices will typically only be requested to set their sampling interval in the range of 8 to
25 milliseconds (40 to 120 reports/second). Set Sampling Interval is a device defined
control/status message:

Op-code: 01 Data: 1-byte number of milliseconds.

ACCESS .bus Locator Device Protocol Specification V2.2 * - _ 4-5

46

4.5.3

4.5.4

Application Poll

The Application Poll command instructs the locator to report its current state as a Locator
Event Report. The Locator Event Report includes the current movement or posmon and
status of any locator buttons. .

Op-code: 02 Data: none.
Locator Self Test _Reportv

Upon receiving an Application Test command, the locator will test its electronics and
firmware and report the results as an Application Test Reply report (se¢ ACCESS.bus
Descnpuon and Protocol Specification). The locator uses the followmg status values in -
its Attention report:

Success

ROM checksum error detected

RAM error detected

Sensing or hardware error detected
Sensing device or cursor out of proximity
Other error

MWD =O

If a ROM checksum error is detected, the second data byte will give the computed non-
zero checksum. -

ACCESS.bus Locator Device Protocol Specification V2.2

SECTION 5

ACCESS.bus

Keyboard Device Protocol Specification

SECTION 5

ACCESS.bus

Keyboard Device Protocol Specification

February 1994

The information in this document is subject to change without notice and should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of I2C components from vendors licensed by Philips under the Philips 12C patent conveys a
license to use these components in an 12C system, provided that the system conforms to I
specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

5.0 Introduction.....................;.......Q.: 5-1
5.01 Design Objecuves eeeeerrenenenersesesereeaeeeeranne 5-1
5.02 Generic Keyboard OVEIVIEW......cceveeereerererseesessneeseeseesserersssessessessess 5-1
5.1 Key Event Reporting e eeeeeee e reseese e eeee e sesese e sees 52
52 ABIOREPEAL.....coueueceuseeneeaeesessesssesssessessesasesssessssastssessesasensenserssenens 52
53 Keyclickand Bellueieeiiieinnieiineeenteencntrcnese et cne e nne e 52
54 Capabilities Inform.au'on ... 5-3
55 Timing and Exceptions (Guidelne)......ccuceerimmecirrmmnecrrmenerninnioneiiisnnens o34
5.6 Host Commands to Keyboardccoeerienieerrnmneceneareaemnesencnieneenosssscarsses 54
5.6.1 Application Click (Optional)........cceeeueeeeeneirrnnereennieeenssreceersenes 54
5.6.2 Application Bell (Optional)......c.eeiiiiinevesressoransessosssnnssssssrsnassses 54
5.6.3 Application LEDSccoetvrurervcersercavarnerceseanas cresecraniennatisnnannen 5-5
5.64 Application Poll..........ceveermssssisersreressinninmmscsserssroessosessrnesssnes 5-5
5.7 Keyboard To HOSt Datac.ccveeiiiinnniiiinniniicensiraniiissessissssesssssssrsrsases 5-5
5.7.1 Keyboard State Report (Device Data Stream)ccc. ..., rerraeeen 5-5
572 Keyboard OUtPUL EFTOri.cuceeeeniernneneeecncernnneneecnsecsssnesssosnses 5-5
5.8 Keyboard Mapping Tables.....cccccvvvveccmeeriisscncemerecccrronneneersssecsasnneensnansas 5-7
5.8.1 Keyboard Mappingc.cccvveeeiuiirneerencceeeerennernserrecseessenssessesaons 5-7
Appendix 5,A° LANGUAGE MAPPING ...coooviiiiiicccecsimnrccniessssressisecsonaes 5-8
Appendix 5B KEYMAPS ..oiiiiiiriiiiientiticcicrtenisreascnnssees s eessss e 59
Appendix 5.C PC 101/102 DESIGNccveiiiiiiimiieiinieceerenernnereeenerseossnnsonses 5-12

Appendix 5.0 EXAMPLE ISO/EUC 9995 KEY POSITIONS — 5-16

5.0

Introduction

5.0.1

5.0.2

Design Objectives

The keyboard device protocol described in this specification defines standard messages for
reporting keystrokes and controlling keyboard peripherals. The keyboard device protocol
attempts to define the simplest set of functions from which common industry standard
keyboard interfaces can be built. The following principles were used to guide the design:

1. Provide sufficient functional completeness to support existing user interfaces.

2. Reduce complexity in human terms wherever possible. Existing keyboard drivers do
not utilize many of the features provided. Some have introduced errors in handling
the subtle interactions defined.

3. Minimize state information that must be modeled in both the keyboard and the host.
This is to avoid synchronization problems. '

4. Minimize memory required in the keyboard. Cost per bit is much lower on the host.

5. Minimize per unit cost for hardware and firmware while allowing high function
alternatives. :

6. Provide standard Key Code for office keyboards so that they can use standard drivers.
Other keyboards can provide alternate tables with the standard drivers or replace the
drivers altogether

~ Generic Keyboard Overview

A generic keyboard consists of an array of key stations assigned numbers (Key codes)
between 8 and 255 (08 - FF). When any key station transitions between open and closed,
the entire list of Key Codes for key stations currently closed or depressed is transmitted to
the host.

In addition to reporting key stations, the generic keyboard device can support simple
feedback mechanisms such as key clicks, bells, and light-emitting diodes. These
mechanisms are controlled explicitly from the host so that minimal keyboard state
modeling is required. The capabilities information is used to identify the keyboard
mapping table and the feedback mechanisms available. The keyboard mapping and
language configuration can also be stored in the keyboard itself as part of the capabilities
string.

ACCESS bus Keyboard Device Protocol Specification V2.2 51

‘5.1

5.2

53

Key Event Reporting

Each key is aséigncd a unique 8-bit number (8-255). The first eight (8) codes are reserved for other
keyboard functions. On each key transition, up or down, the keyboard will report the complete
state of the key array as a list of zero to ten key stations that are currently down.

Example: user enters the modified keystroke Alt-Shift-A

transition report

Alt down Alt

Shift down Alt Shift

‘A down Alt shift A

‘A' up Alt Shift

Shift up Alt _
Alt up <empty list> (see 5.7.1)

This reporting scheme is functionally complete in that the host can detect every key transition and
it provides the full state of the keyboard on each report. No special re synchronization reports are

To simplify generating the reports, keys can be reported in any order.

Auto Repeat

Auto-repeat is the responsibility of the host. The common model is to have appropriate keys begin
auto-repeating at a constant <rate> if held down for longer than some start up <delay>. The auto-
repeat <rate> and <delay> are often user setable.

Key click and Bell

Key click is handled manually by the host sending the command to click after each appropriate key
transition or auto repeated keystroke. In order for key click to appear instantaneous, key click
should occur within 100 milliseconds of the corresponding key transition. The key click volume is
specified by the host on each command so there is no state to set or remember in the keyboard.

Bell is handled manually by the host sending the command to sound the bell as needed. The bell
volume is specified by the host on each command so there is no state to set or remember in the

keyboard.

* ACCESS .bus Keyboard Protocol Specification V2.2

54 Capabilities Information

The keywords defined in this section have standard meanings within the ACCESS.bus Generic

Keyboard Device Protocol.
Keyword Meaning
prevQ The "prev()" value are two bytes that indicate the current ACCESS.bus

protocol revision, and the current device specific protocol revision. The
- current prev value for keyboards is BA- prev(BA) - B is the base :
protocol revision and A is the current keyboards protocol revision.

keymap() The "keymap()" entry identifies what platform/layout a keyboard is
. configured for. The primary usage will be to define the keys available
on the current keyboard as a subset of those on the master table. This
feature allows a single keyboard driver to support multiple platforms
and multiple keyboard designs for each platform.

A second usage would allow the system to substitute other key codes
from the master list to convert some or all of those stored and sent by
the keyboard, This feature provides the user flexibility through
remapping and improved emulation.

The keymap() parameter will also define special key combinations that
control functions such as reset, pause, attention and reboot.

S lang() The "lang()" entry identifies keyboard language. The keyboard will
indicate to the system driver the langnage/country for which it is
configured. The system ACCESS.bus driver will then substitute the
appropriate characters for those keys which undergo language/country
specific changes.

The key used for a period or comma on the numeric keypad should be
determined by keymap(). Whether it generates a comma or period
should be determined by the operating system, locale settings.
However if the system does not have locale settings, lang() may be
used. '

The lang() parameter will also control language specific keyboard
functions such as but not limited to:

Dead key tables

Treat Caps Lock as Shift Lock
Toggle or latch Shift Lock

Use Shift-Alt instead of Ctrl-Alt
Alt-gr use

feedback() The "feedback()” entry lists and describes the feedback mechanisms
available for use by host software.

clickQ The "click()" entry indicates the keyboard provides a host controlled
click feature. The parenthesis contain an integer representing the
maximum volume setting. Zero is assumed to be the minimum.

bellQ The "bell()" entry indicates the keyboard provides a host controlled bell

feature. The parenthesis contain an integer representing the maximum
volume setting. Zero is assumed to be minimum.

ACCESS .bus Keyboard Device Protocol Specification V2.2 53

5.5

5.6

" 54

pitchQ The "pitch()" entry indicates the keyboard provides a host controlled bell
pitch control feature. The parenthesis contain an integer representing the
maximum pitch range setting. Drivers with no user interface to control
pitch should use the median value. Zero is the lowest pitch supported.

led() The "led()" entry indicates the keyboard provides 1 to 16 host
: controlied LED indicators. The parenthesis contain a list of tagged
labels giving the bit switch number in the illumination mask and
corresponding .indicator label or name. The following labels are
currently defined: Other labels are reserved for future assignment.

hold, com (compose), wait, num (num lock),
cap (caps lock/shift lock), scr (scroll lock)

Warning - Bits switches are numbered from 1 (Least Significant Bit) to 16 (most
Significant Bit). This is different from normal bit numbering.

Timing and Exceptions (Guideline)

The keyboard microprocessor scans the key array repeatedly to detect key transitions. If more than
one key transition is detected during a single scan, all key transitions will be reported together as
part of the new keyboard state. In this case, the order of key transitions cannot be determined.

When the microprocessor completes a scan of the key array and has detected one or more key
transitions, it will try to assume bus mastership to sénd a keyboard report. Since other devices
may be using the bus, it could take some time before the keyboard is allowed to become bus
master. The processor may restart scanning the key array during this time, and wait to be
interrupted when bus mastership has been granted.

It is assumed devices attached to the ACCESS.bus will have an opportunity to report during every
20 milliseconds.

Host Commands to Keyboard

5.6.1 Application Click (Optional)

The Application Click command instructs the keyboard to generate a click sound (device
defined Control/Status, P=1). :

. Op-code: 01 _
Data: I-byte click volume

5.6.2 Application Bell (Optional)

The Application Bell command instructs the keyboard to generate a bell sound (device
defined Control Status, P=l).

Op-code: 0z -
Data: 1-byte bell volume
Data: 1-byte bell pitch

ACCESS .bus Keyboard Protocol Specification V2.2

5.6.3

5.6.4

Application LEDs

The Application LEDs command instructs the keyboard to illuminate one or more LED
indicators (device defined Control/Status, P=1).

Format:
Op-code: 03
Data: 2-byte illumination mask: O=off, 1=on
Note: bits are defined in LED capabilities. See 2.6.2.2
Application Poll |

The Application Poll command instructs the keyboard to report its current state showing
which keys are currently down (device defined Control/Status, P=1). See Keyboard State
Report.

Op-code: 04
Data: none

5.7 Keyboard To Host Data

5.7.1

5.7.2

Keyboard State Report (Device Data Stream)

The keyboard State Report transmits a list of up to ten key codes (8-255) for the keys that
are currently down. Code value zero (0) means the key list is empty, no keys are down.

0101000 (50 = Host Dest addr)
ddddddd Device Address
00000001 (P=0, Length=1)
00000000 No keys down

oceeeece Check Sum
Keyboard Output Error

The Keyboard Qutput Error message indicates that the keyboard has detected a key state it
cannot report. This might occur because more than ten keys are being held down
simultaneously or a possible phantom key has been detected. The keyboard will transmit
a valid key state report as soon as the condition preventing the key state from being sent
is corrected. Keyboard Output Error is a device defined Control/Status message.

Keyboard Output Error should be reported using the uniform Application Status Message
(op code = A200). Although other devices use vendor dependent error reporting, all
keyboards will use the following standard error reporting to allow the use of a common
device driver. '

The error report message would be:

0101000 (50 = Host Dest addr)
diiidd Device Address
10000101 P=1, Length=5)
10100010 A2 op code
00000000 Secondary opcode -
00000110 (06 = Error Occurred)
000000pt p=1 if phantom key error (bit 1)
t=1 if too many keys depressed (bit 0) (LSB)
00000000 Second error byte
CCOCOCCC . Check Sum

ACCESS bus Keyboard Device Protocol Specification V2.2 55

5-6

5.7.3

5.7.4

5.7.5

Keyboard Startup

At device power up, or upon receiving a "Reset” command, the keyboard will set its
device address to the ACCESS.bus defaunlt address (6E) and test its electronics and
firmware and will report its presence with an "Attention" report (see ACCESS.bus
Description and Protocol Specification).

Start up guidelines:

If a ROM or RAM error is detected, the keyboard may attempt to start normal
operation anyway. '

If a key down efror is detected, the keyboard will send the attention message. It
will flag the key down condition when the driver asks for the self-test results and
then resume scanning the key array until all keys are up. It will then use the
Applications Status Message to report ‘device ready'. ‘

.Keyboard Self-Test report

The keyboard will report its self-test results using the Application Test Reply message
(op code Al). The first Application Test (op code B1) after startup will signal the
keyboard to send its startup self test results in the following format:

00 Successful Self-Test

01 ROM checksum error detected
02 RAM error detected

03 Key down error detected

The ROM error will be followed by the computed 16 bit checksum and Key down error
will be followed by the key code for the first key detected, respectively.

Multiple errors can be combined in the same test report.

Keyboard Capabilities Change notification

Keyboard capability changes must be signaled with the Applications Status Message
Command (op code A200). In response to the new host request for capabilities the
keyboard will return a new capability set that will completely replace the previous set.

This feature will usually be used to change lang() for a multilingual keyboard or keymap()
for a user programmable keyboard.

ACCESS .bus Keyboard Protocol Specification V2.2

58 Keyboard Mapping Tables
5.8.1 Keyboard Mapping

This standard will establish standard mapping for Key Codes since it is not practical for
every keyboard manufacturer to provide keyboard mapping tables for every country

. variation of every language for every operating system. Once a Key Code is assigned it
will not change in all future standards. This standard will set Key Code to character or
function relationships. Key positioning information is not part of the o
standard and is only provided as a guide.

Mapping is controlled by two capability parameters, keymap() and lang(). Keymap
identified the platform specific layout of the keyboard. For example keymap(EPC)
identifies the keyboard as being a 101/102 Extended PC keyboard. Keymap(SUNS5)
identifies it as a type 5 Sun keyboard and a keymap(LK501) is a DEC keyboard layout.

The Lang() mapping is consistent across platforms but may vary by country or locale.
French keyboards in France typically use the AZERTY layout regardless of platform.

The lang() mapping tables will be provided with the operating system specific keyboard
driver. The operating system will usually allow the user to override lang() to allow users
to type in languages not supported by the keyboard hardware. This will allow users to
put stickers on the key caps without reprogramming or reoptioning the keyboard.
Usually the user will allow the keyboard to designate the language so that they can use
either smart multi-lingual keyboards or different language specific keyboards. If no lang(
is specified or if it does not match any language supported by the operating system then
the default will be US English. (See Appendix 5D)

5.8.2 PC Keyboard Mapping

Because of the large number of PC keyboards, Appendix 5.C shows the standard Key
Codes in a format specific to US English PC 101 keyboards.

ACCESS.bus Keyboard Device Protocol Specification V2.2 5-7

APPENDIX S5.A
LANGUAGE MAPPING

Currently-the only language defined is US English which is the default if no lang() parameter is supplied.

Table 5A.1 Language Table

Key Code | LANG(Q | Typical

Key Code | LANG(Q | Typical ' Position

Position 1C A CO01
OE "~ E00 1B S C02
16 1! EO1 23 D C03
1E 2@ E02 o 2B F Co4
26 34 EO03 34 G Co05
25 43 E04 . 33 H C06
2E 5% EO05 3B J Co7
36 [N E06 42 K Co08
3D 7&. E0Q7 4B L C09
3E 8* EO08 4C 3 C10
46 9(-1 EO9 52 Cl1
45 0 E10 53 \ C12
4E - Ell . 61 BOO
55 =+ E12 1A Z BO1
SD N E13 22 X BO2
15 Q D01 21 C BO3
1D w D02, 2A \% BO4
24 - E D03 32 B B05
2D R D04 31 N B06
2C T D05 3A M BO7
35 Y D06 41 ,< BO8
3C U DO7 49 > B09
43 I D08 , 4A Vid B10
44 6] DO9 62 B1l
4D P D10 67 A02
54 f{ D11 29 Space A0S
5B Jli D12 64 A0S
5C \ D13 13 A09

Note that the shifted 6 is a caret "*' on an ASCII system and a not sign '—' on an EBCDIC system
with a standard US language layout.

5-8 ACCESS .bus Keyboard Protocol Specification V2.2

APPENDIX 5.B
KEYMAPS

This is the standard key mapping for Key Codes of normal office systems keyboards. Normally only a
subset of these codes are implemented. Each platform has different requirements. Cross platform mixes of
keyboards and systems will require KEYMAPS() to invoke special remapping so that the keyboard will
support a minimal set of required functions of the system. Table 5B.1 is to be used as a guide line.
Developers can deviate from this table in two ways:

1. They can move keys to other positions on the keyboard and move the key codes to the new position.
The advantage is that they can use standard keymaps. .

2. Key functions can be moved to other locations using the key codes at those new locations. New
keymaps must be used but this technique save having to redo the internal key mapping within that
keyboard controller

The following table provides a suggested starting point to maintain commonalty between hardware and
devices driver designs. The typical positions are for reference purposes only. -

Table 5B.1 Standard Key Code Mapping

Typical Key Code | KEYMAP(EPC) | IBM 101 Other Functions
Position PC 101/102 Position

El4 66 Backspace 15

DOQ 0D Tab 16

C99 AF Ctrl

C00 58 -} Lock 30

C13 S5A Return 43

B99 12 Left Shift 44

B12 59 Right Shift 57

A99 14 Left Ctrl 58 Ctrl

A00 Bl Left Compose/Alt
A0l 11 Left Alt 60 Left Diamond
Al0 91 Right AI/AItGr | 62 AltGr

All AD Right Compose
Al2 94 Right Ctrl 64 Right Ctrl

E31 FO Insert 75 Find/PAl

E32 EC Home 80 Insert/Page Up
E33 FD Page Up 85 Pape Down/Remove
D31 F1 Delete 76 End/Select

D32 E9 End 81 Insert/Prev

D33 FA Page Down 86 Delete/Next
C31 82

C32 85 ' Up Amrow

C33 84

B31 86 ' Left Arrow

B32 F5 Up Arrow 83

B33 87 Right Arrow

ACCESS.bus Keyboard Device Protocol Specification V2.2 59

Typical Key Code | KEYMAP(EPC) | IBM 101 Other Functions
Position PC 101/102 Position :
A3l ES5 Left Arrow 79

A32 F2 Down Arrow 84

A33 F4 Right Arrow 89

E51 77 Num Lock 1 90 Esc
E52 CA KP / 95

E53 7C “KP * 100

E54 7B KP - 105

D51 6C KP 7 91

D52 75 KP 8 96

D53 7D KP 9 101

D54 79 KP + 106

C51 6B KP 4 92

C52 73 KP 5 97

C53 74 KP 6 102

C54 65 107

B51 69 KP 1 93

B52 72 KP2 98

B53 7A KP 3 103

B34 DA KP Enter 108

AS1 6D 94 KP 0
AS2 70 KP Q 99 KP 00
AS53 71 KP. or, 104 KP 000
A4 DC 109

1L.99 76 Esc 110

LO1 17 F1 112

102 18 F2 113

LO3 19 F3 114

LO4 0C F4 115

LO5 1F F5 116

LO6 0B F6 - 117

LO7 83 F7 118

L08 0A F§ 119

109 | 20 F9 120

L10 09 F10 121

L1] 78 F11 122

L12 27 F12 123

L13 OF F13
L14 10 F14
L31 92 Print Screen 124 Help
L32 7E Scroll Lock 125

L33 95 Pause - 126 Pause
L51 28 : Mute
L52 2F Vol -
L53 30 Vol +
154 37 Power
K01 38 F13
K02 39 F14

. 510

ACCESS.bus Keyboard Protocol Specification V2.2

Other Functions

Typical Key Code | KEYMAP(EPC) | IBM 101

Position PC 101/102 Position

K03 3F _| F15

K04 40 F16

K05 47 F17

K06 48 F18

K07 4F F19

K08 50 F20

K09 51 F21

K10 56 F22

K11 57 F23

K12 SE F24

E79 SF Attn/SysReq/Stop
E80 60 Clear/Again
D79 63 CrSel/Props
D80 68 Undo

C79 6A ExSel/Front
C80 6E ErEOF

B79 6F Oper

B80 7F Copy

A79 80 Find

A80 81 Out

L79 88

1.80 89 Help

ACCESS .bus Keyboard Device Protocol Specification V2.2

5-11

APPENDIX 5.C
PC 101/102 KEYBOARD DESIGN

This appendix describes an example ACCESS.bus keyboard implementation and should not be
viewed as specifying any conformance requirements.

5.C.1 PC 101 Capabilities Information Example

prot(keyb)
model(PC101)

type(keyboard)

keymap(EPC) :
feedback(click(15)bell(15)led(2(scr)3(cap)4(num)))

lang() defaults to US English, Click and bell volumes can range for 0 10 15.

The LED control byte for standard PC keyboards:

Bitswitch 1 Not Used (Least Significant Bit)
Bitswitch 2 Scroll Lock
Bitswitch 3 Caps Lock
Bitswitch 4 Num Lock
Bitswitch 5-16 Not Used .
110 112|113 |114115] 1M16[117]|118|119] [120(121|122 |123 12411251126
1 213 |4 |5|16]7(18]|9]1o]11{12]|13]14]15 75180 |85 90] 95100105
16 | 17118 19|20 (21)22|23| 24252627 28] 29 76181]86 91] 96 |101
30 {31 |32 |33 |34 |35 |36 |37 |38 |39 |40 {41 f42 |43 92|97 (102 06
44 46 |47 |48 149 |50 |51 |52 |53 |54 |55 57 83 93] 98 103108
58 60 61 62 64 79184 |89 94199 |104

Figure 5C.1 PC 101 key keyboard Key Numbers

Table 5C.1: Key Codes as applied to an Extended PC keyboard.

Key Number Key Code LANG(KEYMAP®EPC) Position

1 OE S~ EQO

2 16 1! EO1

3 1E 2@ E02

4 26 3# E03

5 25 43 E04

6 2E 5% EQS

7 36 & E06

8 3D 1& EQ7

5-12 ACCESS.bus Keyboard Protocol Specification V2.2

Key Number Key Code LANG(0 KEYMAP(EPC) Position
9 3E 8* : 3 EO8
10 46 N E09
11 45 0) E10
12 4E - El1
13 55 =+ El12
14 5D \ E13
15 66 Backspace - El4-
16 0D Tab D00
17 15 Q DO1
18 1D w D02
19 24 - E D03
20 2D R D04
21 2C T D05
22 35 Y D06
23 3C U D07
24 -1 43 1 D08
25 44 o) D09
26 4D P D10
27 54 I D11
28 SB 1 D12
29 5C \l D13
30 58 Caps Lock C00
31 1C A C01
32 1B S C02
33 23 D C03
34 2B F C04
35 34 G CO05
36 33 H C06
37 3B J Co07
38 42 K C08
39 4B L C09
40 4C 3 C10
41 52 Cl1
42 53 \ Cl12
43 S5A Return C13
44 12 Left Shift B99
45 61 Reserved BOO
46 1A Z BO1
47 22 X BO2
48 21 C BO3
49 2A v B04
50 32 B BOS
51 31 N B06
52 3A M B07
53 41 ,< BOS
54 49 D> B0O9

ACCESS.bus Keyboard Device Probcol Specification V2.2

5-13

Key Number Key Code LANG(KEYMAP(EPC) Position
55 4A N7 . B10
56 62 Reserved . Bli
57 59 Right Shift B12
58 14 Left Ctrl = A99
60 11 : Left Alt , A0l
61 29 . Space - A05
62 . 91 Right Alt Al0
64 94 Right Ctrl Al2
65 67 Reserved A02
66 64 Reserved A08
67 13 Reserved AQ09
75 FO Insert ‘ E31
76 F1l Delete D31
77 82 , ' .Reserved C31
78 86 Reserved ‘ B31
79 -1 ES Left Arrow A3l
80 EC Home E32
81 E9 End D32
82 85 Reserved C32
83 F5 - Up Arrow B32
84 F2 Down Arrow A32
85 FD Page Up E33
86 FA Page Down D33
87 . 84 Reserved C33
88 87 Reserved B33
89 F4 . Right Arrow A33
90 77 . ‘ Num Lock ES1
91 6C KP 7 D51
92 6B KP 4 C51
93 69 : KP 1 B51
94 6D Reserved AS1
95 CA KP / ES2
96 75 : KP 8 D52
97 73 KP 5 C52
98 72 , KP 2 B52
99 70 KP 0 AS52
100 7C KP* ES53
101 7D KP 9 D53
102 74 KP 6 C53
103 7A KP 3 B53
104 71 KP. or, AS3
105 7B KP - E54
106 79 ' KP + D54
107 65 Reservede C54
108 DA HP Enter B54
109 DC Reserved AS54

5-14 ACCESS .bus Keyboard Protocol Specification V2.2

Key Number

Key Code LANG(KEYMAP(EPC) Position
110 76 Esc 1.99
112 17 F1 LO1
113 18 F2 102
114 19 F3 LO3
115 0C F4 LO4
116 1F F5 LO5
117 0B F6 L06
118 83 F7 LO7
119 0A F8 1.08
120 20 F9 L09
121 09 F10 L10
122 78 Fl11 L1l
123 27 F12 L12
124 92 Print Screen L31
125 7E Scroll Lock 132
126 - 95 Pause L33

Some key numbers do not have keys caps on a standard PC 101 keyboard, but they may have switches that
are wired into the matrix even if they can not be used. The Key Codes are provided because they may be

used in other configurations. These key numbers and the corresponding Key Codes are marked as
"Reserved” in either the LANG() or KEYMAP() columns.

N

ACCESS.bus Keyboard Device Projocol Specification V2.2

5-15

The ISO/EUC 9995 standard is a universal standard that identifies key positions using a coordinate system.

APPENDIX 5.D

EXAMPLE ISO/EDUC 9995 KEY POSITIONS

Other vendor specific systems are often incomplete and require special accompanying diagrams. Columns
78 and 80 are on the left-hand side of the keyboard. These position identifiers are only used for reference

purposes only. Actual key positioning is up to the keyboard implementer.

Kot lKuz Kos [Ko4 Kos |kos | ko7 |kos K |Kkio |K1t |Ki2

199 o1 |2 je o4 L5 |6 [Lo7 Jios w9 jLo | L jLe2 LB e [
Eco |Eot |E2 |E03 JEo4 |E05 | E06 [E07 {EOB | E09 |E10 |Et11 |E12 |E13 [EM4 E31 |Ex2 |Em B51 |Es2 |ES0 [ES4
DO0 Do1 |D02 1DO3 |DO4 |DO5 | DO |DO7 |Dos |Dos |D10 | D1t (D12 | D13 D31 D32 } D33 D51 [Ds2 |D53 D54
Co0 fCo1 jCo2 Jco3 |co4 fco5 Jcos |co7 o8 |cos |cio | c11 |ci2 feis cR cs51 | C52 |cs3 |cs4
B99 |BOO IB)1 Bo4 |Bo5 |Bos |BO7 o8 (Bo9 |B10 |B11 | B12 B31 {B32 |83 Bs1 |BR2 |B63 |B54
A% A0t | A02 A0S (o8 A | At0 AR A3 | AR [A33 A51 | AS2 | AS3 |As4

Figure 5.d1: Example of some ISO/EUC 9995 Key positions

" 5-16

ACCESS bus Keyboard Protocol Specification V2.2

SECTION 6

ACCESS.bus

Text Device Protocol Specification

SECTION 6

ACCESS.bus:

Text Device Protocol Specification

February 1994

The information in this document is subject to change without notice and.should not be construed as a
commitment by the ACCESS.bus Industry Group. The ACCESS bus Industry Group assumes no
responsibility for any errors or omissions that may exist in this document.

Copyright, license and patent notices:

© ACCESS.bus InduSuy Group 1991, 1992, 1993, 1994 '
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.bus is a Trademark of the ACCESS.bus Industry Group

Purchase of 12C components from vendors licensed by Philips under the Philips 12C patent conveys a
license to use these components in an I2C system, provided that the system conforms to 12C
specifications. . :

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX: 1-408-991-3773

6.0

6.1

6.2

Introduction.....c.oevimerereennneeennnnnanas ST edrertrestnieeiestetereetisassersentrnanned 6-1
6.0.1 Design ObJECHVESoevvrmiiiniiiviiiniiiisiiinin e 6-1
6.0.2 Text Device OVeIViEeW.........c.cceveueunnee. 6-1
Text DEVICE PIOLOCOLcevvevereererererenesesasesesesesessesesessssnssnssasessnens 6-1
6.1.1 Device Number and Identification..............ooo.ccorvereerrvrrrrrrenness 6-1
6.1.2 Message Lengthand Timingcoeeeevceceeiiniinnnniiniiniinnnenennn. 6-1
6.1.3 Flow Control..........coceuremmiinniiiriiemmmniriniiiriiai s seensaen e 6-2
6.1.4 Serial Asynchronous Communication Parameters.................vuene.. 6-3
6.1.5 Serial Asynchronous Control Signals..........ccccooevvvvvnvniinenennnann. 6-3
6.1.6 Direction CONtIOL......ceveeeeeiiiiiiiiiiiriinniirniiini i etiesaennaeaes 64

Capabilities INfOrmation............ccoeemiiiiiiiiiiiiiiniiim e 6-5

6.0 Introduction

6.0.1

6.0.2

Design Objectives

The text device protocol described in this specification is intended to provide a simple way
to transmit character or binary data to and from stream oriented devices such as a bar code
reader, or character display. The sequential character stream model also serves as a
common denominator for connecting RS-232 interfaced devices.

Text Device Overview

A generic text device transmits a stream of 8-bit bytes from a character set. Simple
control messages are defined to support flow control and to select communication
parameters that might be used to interface with a modem. The capabilities string contains
information that identifies the specific character set and communication parameters used.

6.1 Text Device Protocol

Text characters to be transmitied are sent using the Device Data Stream message (see
ACCESS.bus, Description and Protocol Specification).

Format:

dddddddo (destination address)

sssssssO (source address)

OLLLLLLL (P=0, LLLLLLL=body-length)
|

body (0-127 bytes)

|

cceeeeee (checksum)

Characters are assumed to be from the coded character set specified in the Capabilities Information
unless otherwise agreed upon between the application and device. This agreement might be
established using ISO standardized control functions, but this is defined at a higher level than the
text device protocol.

6.1.1

6.1.2

Device Number and Identification

A text device may be interactive like a bar code reader that transmits a stream of characters
in response to user action, or non-interactive like an RS-232 converter attached to a
printer. Non-interactive devices are required to provide a fixed device number since they
cannot be distinguished by the order in which they are used.

A general purpose ACCESS.bus to RS-232 adapter may have no way of reporting what
is attached to its RS-232 port. In this case, the host system or application must rely on
the RS-232 device for device identification. Information about what is attached to an RS-
232 adapter can be maintained on the host and associated by the device number if desired.

Message Length and Timing

Interactive text devices must not occupy the bus as bus master for more than eight
milliseconds at a time, and must wait at least fifty microseconds (50ms) between message
transmissions. Eight milliseconds (8ms) limits the maximum packet size to eighty
characters or less at 100Kbps.

Non-interactive devices must not occupy the bus as bus master for more than five
milliseconds at a time, and must wait at least twelve milliseconds (12ms) between

ACCESS.bus Text Device Protocol Speciﬁcation V22 | - 6-1

6.1.3

message transmissions. Five milliseconds (Sms) limits the maximum packet size to fifty
characters or less at 100Kbps.

The Text Device Protocol defines a Record Separator command to group message packets
into identifiable records.

Application Record Separator ()

Op-code: 30
Data: none

The Record Separator is sent by a device or the host computer to indicate the next data
byte transmitted will be the first byte of a new record. Can also be used as a "end of
record” command. |

Flow Control

When a computer or device is capable of sending data faster than its bus partner can
receive and process it, flow control may be needed to avoid losing data. In its simplest
form, flow control allows the receiver to tell the sender to wait until it is ready before

sending more data. While the 12C hardware provides low level flow control by stretching
clock signals, this will not be appropriate for many applications because it blocks all
traffic on the bus.

An example application requiring higher level flow control is a printer that cannot print
data as fast as the host can send it. Depending on the application, the printer may need to
instruct the computer to not transmit any more messages until it has room in its buffer to
hold them.

Two application commands are defined for this purpose:

Application Hold ()
Op-code: 13h

Data: none.
Tell the sender to hold transmission until requested to resume.
Application Resume (count)

Op-code: 11h Data: 16-bit unsigned integer count of number of bytes
device is ready to accept.

Tell sender it may resume transmitting data up to “count’ characters. If *count' is zero or
omitted, the sender may continue transmitting until requested to hold.

By using a non-zero count in the AppResume command, a receiving device need not
transmit an urgent message to the sender when its buffer is full.

Notes:

1. AppHold and AppResume only affect device data stream messages. All
ControVStatus commands must continue to be processed regardless of the held state.

2. When a device is reset it has no way of knowing the previous flow control state.
After being reset and the configuration process is complete, a device using flow
control shall transmit a single AppResume command and clear its transmit held
state (if any).

. ACCESS.bus Text Device Protocol Specification V2.2

6.14 Serial Asynchronous Communication Parameters

The Text Device Protocol defines the following commands for interfacing with common
UARTs.

Application Set Format (controlmask)

OpCode: 01
Data: 16-bit controlmask

The control mask specifies UART parameters as follows. Choices listed in parenthesis are
selected in order (0, 1, 2,...).

b0-b3 ransmit speed _
(default, 19200, 9600, 4800, 2400, 1200, 600, 300)
b4-b7 receive speed
(rx=tx, 19200, 9600, 4800, 2400, 1200, 600, 300)
b8 word size (8-bits, 7-bits)
b9 stop bits (one stop bit, two stop bits)
blO-bll parity (none, even, odd)
bl2 local echo (FDX, HDX)
bl3-bl4 flow control (none, XON/XOFF, DSR/DTR, RTS/CTS)

Application Request Format ().

Op-code: 02
Data: none

Application Request Format is sent from the host to a device and requests the device
respond with an Application Report Format message.

Application Report Format (controlmask)

Op-code: -~ 03
Data: 16-bit control mask, same as Application Set Format
6.1.5 Serial Asynchronous Control Signals

The Text Device Protocol defines the following commands for interfacing with common
RS232 control signals.

Application Set Control (controlmask)

Op-code: 04
Data: 16-bit control mask

The control mask identifies the control signals to be set as follows (DCE side):

b0 DSR
bl DTR
b2 RTS
b3 CTS

b4 RLSD (or CD)

bS FE (framing error)
b6 OE (overrun error)
b7 PE (parity error)
b8 Break detected

ACCESS.bus Text Device Protocol Specification V2.2 6-3

6.1.6

6-4

b9 Send break :
bl0-11 reserved :
bl2-15 available for application use

Application Reset Control (controlmask)

Op-code: 05
Data: 16-bit control mask.

The control number identifies the control signals to be reset using the same definitions as
Application Set Control.’

Application Request Control ()

Op-code: 06
Data: none

Application Request Control is sent from the host to a device and requests the device

_respond with an Application Report Control message.

Application Report Control (controlmask)

Op-code: 07

Data: 16-bit control mask

Sent by a device to the host when an input control signal changes or in response to a
request. The controlmask reports the status of UART control signals using the same
definitions as Application Set Control.

Direction Control

The Text Device Protocol defines the following command for cbntrolling the direction of
bi-modal interfaces.

Application Set Direction (controlmask)

Op-code: 08

Data: 16-bit control mask

Sent by the host computer to a device to specify the direction of interface operation,

bO-bl Direction (transmit, receive, full duplex)
b2-b3 Rank (Default, Master, Slave, Off-line)
Examples of Master: RS-232 DTE
Host centronics port
Dialing FAX
Examples of Slave: RS-232 DCE
Printer centronics port
Answering FAX
b4-b7 Reserved
b8-bl5 Available for application use

y ACCESS.bus Text Device Protocol Specification V2.2

6.2 Capabilities Information

The keywords defined in this section have standard meanmgs w1thm the ACCESS.bus Generic

Text Device Protocol.
Keyword Meaning
Charset() Tags the default character set used to encode text data. The
: following names are defined:
ASCII, 150:8859/1
Direction() Tags whether device can be used for data input, data output, or

half-duplex, or full-duplex.
Direction(input output HDX FDX)
FlowControl)) Tags whether low level flow control is used for input and/or
output (AppHold and AppResume).
FlowControl(input output)
UARTiormat() Lists common UART format selections that are supported and
can be modified or examined by Application Format
commands.
UARTformat(speed, size, parity, stop, echo, flow(0 1 2 3))
The sublist of numbers, if present, indicates which
selections are supported.
UARTcontrol) Lists common modem control signals that are supported and can
be modified or examined by Application Control commands.
UARTcontrol(DSR DTR RTS CTS RLSD FE OE PE REAK)

ACCESS.bus Text Device Protocol Specification V2.2 . _ 6-5

 SECTION 7

ACCESS.bus

Mechanical DraWings

SECTION 7

ACCESS.bus

Mechanical Drawings

February 1994

The information in this document is subject to change without notice and should not be construed as a com-
mitment by the ACCESS.bus Industry Group. The ACCESS.bus Industry Group assumes no responsibility
for any errors or omissions that may exist in this document, :

Copyright, license and patent notices:

© ACCESS.bus Industry Group 1991, 1992, 1993, 1994
All rights reserved. This document may be freely copied or distributed, provided that it is reproduced in its
entirety.

ACCESS.busis a Trademark of the ACCESS.bus Industry Group

Purchase of I°C componen'ts from vendors licensed by Philips under the Philips I’C patent conveys a license
1o use these components in an 12C system, provided that the system conforms to 12C specifications.

ACCESS.bus Industry Group
370 Altair Way, Suite 215
Sunnyvale, California 94086

Telephone: 1-408-991-3517
FAX:1-408-991-3773

7.0 Mechanical Drawings.........ceeeeeessenssecssessssas ” evertesere e an st sb et sne s st s senanassesaesasiase 7-1
Figure 7.1: Recommended Panel Cut-Out Gvversesuersatastontaterner e ssanessensasesansasssiane 7-1
Figure 7.2: PC Board Layout (connector mbimte_d di),posite 300 Y OO 7-2
Figure 7.3: Cable Assembly - Configuration/Dimensions... 7-3
Figure 7.4: Male Connector - Configuration/Dimensionscceesmimesisseasscesessessansnsessassensas 7-4
Figure 7.5: Male Connectbr - Conﬁguratibn/Diniensions eeeasiensesnresensassrersstssetassasessharesnartsnes 7-5
Figure 7.6: Female Conncctor_(non-keyéd shielded) Configuration/Dimensions............ce.... 7-6
Figure 7.7: Female Connector (non-keyed partially shielded) Configuration/Dimensions... 7-7

V-V MIIA
So1d 2k
— T
J H[e)
v AN
GNNOHY TV H $o\| L o
434 ‘XVIN 00¥"
431134 NIVHLS aNNoWY TV 3
NO-Q NHOMLHY 33S
30700 VIUV # NOILJO 28
_ i X 080"
(=] } {
O |—= - U lﬂ ..J.n.ﬂ a = e
A= =7 L0 -
aNnod MV v ¥ ﬂ
voeo .|| vt 43
aNnoy 1V ©08Y - 065"
v 050" . _ _

= = (5w

. . iﬁ | W mue

-
put

L# NOILISOd dAL ‘HOLO3INNOD Q3d13IHS
— 3dAl OdI 3TV ONINDOT

"OMQ JOHINOD € 'BId 335 td

TOHNAS TYNOILYNH

SHILINITIN NI SNOISNIWIQ 310N

Figure 7.3: Cable Assembly - Configuration/Dimensions

~ ACCESS.bus Mechanical Drawings V2.2

7-3

NOTE: DIMENSIONS IN MILLIMETERS

/— HOUSING

SHIELD

8.13
762 -

T .

5 -] | e ot I rJ] 8

N 1 d—

o === Ty s O
b= J l)
5 il |
Za
oF -

&

ROUND TO FLAT
CRIMP FERRULE

Figure 7.4: Male Connector - Configuration/Dimensions

ACCESS.bus Mechanical Drawings'V2.2

*

u_m_m. 19'¢¢

wn["l

>
82
_

Iy
vrL .
sLL— ANO
D
318v0

dAL = H . 0£'6
TA E
3dAL :
10VINOD 4 \
ONISNOH _ O ES
N 2# 310N 33S
"NMOHS SY AT3LYWIXOHJdY

031V¥O01 NOILVNDISIQ ONIAIN
SHILINITIN NI 3HY SNOISNIWIQ °t ‘SILON

Figure 7.5: Male Connector - Configuration/Dimensions

ACCESS.bus Mechanical Drawings V2.2

7-5

>

434
S6'ct

el

81’ —

V3V ONLLYW Q3JAIN-NON "¢
SHALINITUW NI 3V ISIMEIHLO 'L 'STION

18'€

1YL ANNOHD @

65" 9%
wv 133

Hvoa'0'd
/5 ____

aams — |

%

434

v6'91L
434

./I HIONH
ONIGNNOLD

[~—za310n33s

3OV4 ONILVWN |/

NISNOH

- dAL
434 ov°

S€'ce

ﬂ

IO\ N O

434
SE'Li

Figure 7.6: Female Connector (non-keyed shielded) Configuration/Dimensions

ACCESS.bus Mechanical Drawings V2.2

7-6

59— OVINOD
1 %}
dAl
& e .

. TVLAND
ove auvoa '9'd
L a
n
_ 3y 2 3ION
43y : ~——___ 335
siEl 68l aTaiHs — | X
| |
15’ 30V4 ONILYW /Tvmwm
T ".ﬂ
_ il ~ 1]
434
Y5z — p L __ t ™ owsnon 19’9l
8ie] a2 L _

VIHV ONILVIN Q3A3X-NON ‘2

]| }
SHILINITIW NI 3HY SNOISNINIQ ‘SI1ON

Figure 7.7: Female Connector (non-keyed partially shielded) Configuration/Dimensions

ACCESS.bus Mechanical Drawings V2.2

